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. EXECUTIVE SUI_/ARY

Zc was proposed chac an atomization cechniqua be developed
for producing a spray og uniformly Jized drops in order to avoid the
usual drift of agricultural pesticide chemicals Co nearby _rops or
susceptible auhnals if applied aerially from an aircraft. As a
first step co pursue this approach, comprehensive literature surveys
were performed on both existing techniques for generating such a

}ii unigorm spray developed for ocher applications and the information
regarding chemicals currently used in agricultural aviation spray

! applications. Subsequently, the surveyed information was techni-
• _ tally a_sessed. In addition, new concepts for producing a uniform

I: Spray were generated and conceptually designed.L I,

:.t-i As a result of the literature surveys, approximately 15_++:+, digferent te_hniques were identified. Among those techniques,
" ++:!!+! periodic dispersio_ of liquid Jet, spinnins disk method, and ultra-
z _ sonic atomization were assessed to be most promising, in that order.

"'+ While these techniques have a high probability of being developed
++/+ into the one for agricultural purposes, all of them were found to

i_: require Some extension of their flow rate capabilities Co match
i _/. those required in current agrlculcural aviation appllcaClons.

,-_. AS a second phase of the study, ideas for three additional
!+_ previouSly untried techniques were generated and developed into
_-_..t;: conceptual designs. The flrsc cechnlque would operate on _he prlncl-
IL_" ple under which the drop sizes of an initial spray with a wlde drop
_'_, size distribution are truncated to produce a more uniform size dis-
k'i_ trlbutlou. A classlficatlon of the drops using a centrlfugal force

• " predicting the drop size wlth respect to design parameters and
ii_._ operaclns conditions was given. The second concept is based on _wo
_ opposing llquld-laden air Jets colliding in an acoustlcally active

i_i. region. Due co decelerated and accelerated flows resulting in
this region, large d+ops have to undeuso more breakup stages than

_ small drops• This _nproves the size distribution. The third idea
is to design a device similar to the conv_ntlonal spinning disk

_i acomlzer but operate It at an overloaded glow. The Sheet of liquid

_i initially produced this way is to be broken up by imposing an ex-ternal sonic vibration.

i predictive exploratory nature the p:+e-

Due co the and of
sent study, it _ould be rather prentature to predict the actual

_,: p_rforniattce of th@ conceptual designs _rlchouc any supporting ex-
-;.:+! perim_nCai data. Consequently, eventual verification og the sound-

hess and probability of extending the _roposed kechniques into ai?
+__: real atomizer for a practical use may have to be achieved only by
_ experimental tests on a laboratory scale.

_+-"' o _, , +"t. "_"; .. ......+ f +
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_ INTRODUCTION

_,_ The use of aircraft for applying the chemical formulations tO

_: control agricultural pests is considered cost competitive when compared

_: to other application methods and is usually the best method when time

restrictions exist. However, one of the difficult problems in the field

_!.! of agricultural aviation is the accurate and ufllfor_ application of

i_' chemicals to the target areas while avoiding the drift of chemicals which

might da_ge nearby crops or present hazards to susceptible animals and

_i people in the vicinity. ConslderlnS the size distribution of these drop-

} lets or particles, a loss of material occurs at both the large and small

i! size ends. While excessively large drops settle dir-qtly on the ground
_._,. resultlng in a nonunlform deposit, s_all droplets can drlgt away. In

=_' order to _liminate these problems, the drop size has been controlled in

_:r the past by changing the llquld propertles such as viscosity, density,
_-

=_; and surface tension by use of chemical additives. While the size of

__' individual drops themselves can be varied to a certain extent, this approach

_: does riot p_ovlde a uniformity of drop sizes. One of the logical solutions

=_ " to this problem is then to develop an atomization technique that can pro-

"_.: duce monodlsperse sprays. Considering that Various dynamics of spray

.lli

O0000001-TSA10



2

i

drops such as settling, drifting a_d vaporization are strongly dependent

upon their size, this approach has a high potential for overcoming

many spray application problems.

The objective of the first phase of the present program was to

perform comprehensive literature surveys on the techniques of generating

monodispa_se sprays end on the information concerning liquids used in

agriculturai aviation spray applications. The objective of the secofld

phase of thd prograawas to conceptually design and assess spray nozzles

for generating monodisperse sprays. Major emphasis was given to generating

new atomization coflcepts that have n_t been used previously in any applica-

tion. Thus, any generated concepts were to be conceptual rather than ex-

tensions of existing spraying techniques to agricultural applications.

This report cove_s technical efforts for both the literature

survey and conceptual design phases of the program which were conducted

during the period fro_ October, 1978 to FebruatT, 1979, and from March to

August, 1979, respectively. The pertinent literature references identified

during the first phase are listed alphabetically in the Bibliography regard-

less of whether or not they are cited in this report.

PERFORMANCE REQUIREMENTS FOR SPRAY NOZZLES

The ulti_ate objective of the current program is to identify

or to generate a new concept _or prcducing monodisperse sprays. Through-

out the program, eaphasis has been given to the fundamentals or

basic principles that can satisfy the requirement of producing a mono-

dis_rse spray. Other important requtreaents have been the ranges of

drop size and physical pro_rtles of sprays. Liquid flo_ fetes that can

be covered by each technique have also been given important consideration.

In establishing criteria got the above requirements, _esults of a liter_-

ture survey of agricultural aviation industry are to be used. Finally

extension of the range of applicability of the technique and eventual

development for agricultural application are to be assessed based on the

collected information on the current state of the art for each technique.

Specific requirements to be met by the extended ability of the

identified techniques are_



3

(1) Mon_dispersity o5 eprays: preferably only 5
percent by weight of the drops should be larger
than a maximumsize and only 5 percent smaller
than a minimum size where the maximum and _ini-
mumace defined respectively as 1.2 and 0.80
rimes the average diameter.

(2) Average drop size: the nozzle should produce
sprays over the size range currently employed
for aerial applications.

(3) Ra_ge of liquid properties: the nozzle shouXd
perform satisfactorily over the range of liquid
properties c_rrently used in agricultural appli-
cations.

(4) Applicatiofl rate: the sprayin8 system should be
capable of covering the range o£ flow rates that

is currently used in agricultural application.

In addition to the performance requirements listed above, there are the

following requirements for the nozzles to be developed for agricultural

aviation applications:

• (5) Ease of operaclons and controls, including
initiation and shutoff

(6) Low power requirements

(7) Light weight and small dimensions

(8) Immufllty to variable weather conditions

(9) LoW cost

(i0) Short development time.

Assessment of the priority level for each of the above requlrem_uts will

be discussed further later.

00000001-TSA12
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_: Means for producing sprays of uniformly sizQd d_oplcts have

i_.: recently beon subject of interest for a variety of research and in-

i)." dustrial applications such as Xorography, paint spraying, mass spec-
_ troscopy, combustion, and polymer coating, Monodisperse sprays are

,. also needed as test droplets for evaluating the performance of various

_ dust control devices such as cyclones, filters, and wet scrubbers. In

i; calibrating dUgt counting devices, not only a_e such test droplets
I_ _equ.tred to attain a good mo_odtsperstty, but their droplet sizes are

_ to be accurately determined
; •

i_ In this section, the techniques for producing sprays of uniform

f_: drop are introduced. Emphasis will be given to chose capable of producing
L; !

_:: a monodisperse spray, although the techniques which have a potential

_:_. for development into a more refined form are included. Among the identi-

i, find techniques, those which have been proven not useful are etth_r

!=I:, not included in the discussion or only briefly mentioned. Only the

basic principles and concepts behind each technique are described in

i-_. this section. Further assessment of the theoretical limits and range

i-_,__ of operations for the selected techniques will be made in the separate

_i: section, under the heading of "Assessment of the Current State of the Art".

,,;:_ Periodic Vibration o_ Liquid Jet

This technique is based on _he instability of a liquid Jet

,_;" emerging from a capillary tube or an orifice. If a liquid strea_ is

!:i: emitted from the tube under pressure, this stream is by flature unstable

_ and will soon disintegrate into droplets by the action of a_y external

_, forces. The collapse of such a stream into very uniform droplets is

!. attainable wi_h the application to the stream of a periodic vibration

_: of suitable amplitude and frequency, The necessary vibrations can be

_,? successfully obtained by using (I) a piezoelectric transducer, (2) an

-_/, acoustic vibration, or (5) a direct mechanic&l means. These different
.... types of vibraci_ns will be discussed separately. It is necessary co

..... °°0" ° 00000001TSA13
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_ divide this technique into the t_¢ee categories because each of the
_ three categor_e_ or typee differe not only in deeiSn but aleo £n the

.-_ drop s_._e t'ange that ten be ¢ove_ed.

_;'_ Eleet_ostrictive Oisk Type C_nerator

_:_: Disintegration of liquid stream emerging from an orifice can

_::" be precisely controlled if the orifice is vibrated periodically. Such

_-;_ a periodic vibration of _he orifice can be achieved by "_mplanttr_ the

-_% orifice into a disk made of electrostrictive material (piezoelec,.cic
N i
_2_,,:, cl:ystal} and by applying an electrical signal to the piezoelectr.c

::_ crystal. The performance of apparatus based on this typ_ " de:.

' has been experimentally studied by Str_ (1969) _ a,,." _ '..,t and Liu

_: (1973).

i_'i' Figure 1 is a schematic diagram of the droplet generating

":': system. The system consists of a liquid feeding line, a vibrating

:i:'_ orifice and a signal generator which provMes the necessary disturbanc_

._ to the orifice. As will be further discussed, size of the droplets

_ generated by the apparatus depends upon the orifice size, liquid

_ " velocity, and the signal frequency..._

The frequencies of piezoelectric crystals generally range

;i:: from about 10 to 1000 kHz and the sizes of the droplets produced

_: in this frequency range are about 3 to 50 _m. The orifice diameter

normally ranges fro_ 3 to 20 microns.

_ }} When a monodisperse spray of relatively small droplets are to

_. be produced, small orifices are needed. One of th_ operational problems

_i" in using such small orifices is that the orifice is easily clogged

_ even by a small amount of solid particulates present in the liquid.

/) _n order to avoid this problem, it is usually required to purify the

_?' liquid before feeding into the orifice. For this purpose, membrane

_' filters are installed as illustrated in Figure I. In this case, these

_is filters have to be periodically replaced. Another problem is that

droplets initially very uniform in size can agglomerate soon after

;_ * Na_es and dates in parentheses refer to Bibliography at end of report.

UOUOUOUI IOl-_I@
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leavin$ Ctw o_fice. Ic Ls therefore necessary co provide a dilution

air_l_w around Ch_ orifice such clmc the produced droplecs are

iaznedLaCely dispersed.

.mxv_r

FIGURE 1. SCHEMATICDIACRAMOF EI_CTROSTRICTIVE
DISK TYPE GENERATOR

Vibracin_ Tube Usin S Audio SiAnal

Instead of using the eleccroscrictive oriI;ice vibrated periodi-

cally by an electrical signal, s liquid Jet can be passed through a tube

of relatively large diameter. The vibratio, can be imparted onto the

cube in the form of an acoustic wave using an audio speaker. This type

_--'_" .............................. :...... ; ............... =_ .................................. _ ; i

00000001-TSB01



of_ arransemenc vu _c,_lLed by l_JaBopalan and TLen (1973), and _prvey

and Taylor (1956). A sche_cic diasrmU of che necessa._y apparacua

limilar co chac used by RaJasopal_d Tien (1973) is shorn _ Fisure 2. I

The liquid contained in the 1iq_nid reservoir is forced Co leave u

capillary cube by pressur_.zed sa.q cylinder. The necessary vibraCimt co

the cube Ls cransmtcced by the meca2 cod connected co an oscillacor.

Thus, Che si_;nal seneraced by the oscil_._cor_ and subsequencly amplified

is cransm&cced co che mecal rod vh&ch is co_necced Co che speaker diAphraat.

POmp

F--2-'--
Liquid tank

Liquid ,
r (lll_'_rvoir

AmplifiOr illory tube

t

° Speaker• ,, | 4

Strobotec 0
0

FIGURE 2. SCnI_IATICDIAGRAMOF VIBRATING-TUBE
SPRAYERUSING AUDIOSIGNAL

_:_'"°" " .....:° ...." " """ .... '_:' ° " .... °_" "_ " " ' ' " "............ O0000001--"'""'/,'..'5_uz
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_i The diameter of the capillary tube normally ranges from 50 to

_ 1500 um, thus, much larger than chac _or the electroscriccive disk. Thei
i resulCtn$ droplet _ize %£e_ bet_ee_ 100 to 3000 _m in diameter. The .

signal frequency is in the range of 0.5 co 30 kHz. Ic is reported chat

the observed drop size always agrees with the calculated drop size.

i The f_rmula for this calculation will be discussed l&Cer. The mono-

_ dispersiCy of the sprays as reported by the investigators £s exceptionally

good. For example, _hgarvey and Taylor (1956) report chaC the standard

deviation of the droplets from the mean value is less than 0.5 perceflt
i

for the mean size up to 10,000 um.

Vibrating Tube Using Hechantcal Means

Another way Co produce a periodic disturbance in the liquid

Jec is the use of some sort of mechanical means. Btnek and DohnalovA (1967)

used a fine whisker dipped periodically into the liquid reservoir. The

schematic design of the generator is shown in Figure 3. The whisker

shown in the figure is conhected co a flat spring of silicon iron which

is vibrated by an electromagnetic field. The 50 Hz AC current was used co

create the magnetic field. The whisker has a round shaped tip of 0.015 mm

in diameter. They observed chac when c_ whisker emerges above the liq_d

surface, initially a "liquid bridge" is _ormed across the whisker tip and

the liquid surface. As the whisker moves up further, this bridge is

separated co _o_n a droplet. They found chac the immersion depth of the

whisker as well as liquid surface tension and viscosity can determine the

droplet size.

A similar attempt maF be made by employing a periodically

rotating needle which can beeak up the liquid Jec emerging from a

capillary _Jbe.
i
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Silicon iron bar
Fine whisker

Liquid reservior
-- ,.., w Liquid

FIGURE 3. SCHEMATIC DIAGRAM OF VIBRATING

TUBE SPRAYER USING A WH$SKER

Other Types of Vibrating Tube_

There can be many other types of variations of the periodic

diSperSion of llquid Jet depending upon the particular applications. Erln

and Hendrlck (1968) utilized the vibrating tube configuration coupled with

an earphone to produce the electrlcally charged solid particles. In

order to obtain uniform liquid dropl_ts in the form of suspension in

another llquld system, Fulwyler, et al (1973) introduced a sheath llquld

around the liquid droplets which were p!oduced by a plezoelectrlc

transducer.

Periodic Vibration of Liquid Reservoir

Disintegration of liquids in a manner similar to that descrlb_d

above can also be n_hleved when the vibrations are applied to the liquld

reservoir rather than to the o_iflce or tube, as demonstrated by

Fulwyler and Raabe (1970). ThUs, the reservoir wall or the bottom could

be made of piezoelectric crystal such that the pressurized liquid con-

tained in this type of reservoir can be squirted out through an orifice

to produce uniform droplet at each frequency. L schematic diagram of

this type of nozzle is shown in Figure 4.
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'+_ Althoush there is a distinctive d£fferen_e in configuration

and des_Su between this technique and the vibrating orifice/tube

atomizers, both og these techniques may be considered similar in that

individual d_op_ are periodi_ally produced by an externally controlle4

-_ disturbance. Therefore, further discussio_ on the periodic vibration

o5 liquid reservoir will be combined with that for liquid Jet.

eoooO

• i/OrJ.ficu

: :::1:oo
. O:O0

+"_ O000

.. L£quidf,_+

[--"---" (_3o psi)

_ Pulse Transtt tier
Piezoelectric

Crystal
'----: Vibrltton I

+: Direct:ton _a'r _ StSnal
$t -- Generator

FIGURE 4. SCHEMATTC DL%CEAM OF VIBRAT'_NGRESE."-VOIRATOMIZER

Electrostatic Atomization

For certain liquids, electrostatic dispersion provides another

method for producins uniform droplets. If a hish electrical potential

is applied to a liquid contained in s reservoir, the stream of liquid

which would normally flow slowly through the nozzle on the reservoir

will be disintegrated into fine droplets. As the applied electrical

voltage is increased, the droplets become smaller and the Jet velocity

'_'_" '+.t!................ J ...... -.. ............ , ._
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i +
_i also increases. In general, if the voltage 18 increased further, the I

liquid Jet would disappear forming a spontaneous atomization of liquid

_; to form a fine ._sc at the nozzle•

Figure $ Shows schematically the diape_sion of a liquid ac sev-

_ eral electrical pokentfals as observed by DroZin (1955) When a low electric

_," voltage is applied to the liquid as shown in Figure 5(b), he found that

_: the droplet production rate was increased. As che electric voltage is

,_, further _creased as in Ft_ore 5(c), there exists a stream o_ liquid

_i.: appearing as a thread. Finally, at a high "_ltal_e this thread disappear_

_i 1cawing a cloud of fine droplets as shown in Figure 5(d).

!i/
l;: 0 KV 3 KV 6 KV , 9 KV

J_ _=. - _ _-+L. _ _"e. "!=-

+;' r _ i I I I i I

.%+,

._ _

o .. JL ""t: o •
+.
o_,+ II,

•,*, •

+:' O e-

_:'" O. b. C. d.
++.

_,:+ EIGURE 5. ELECTROSTATIC ATOMIZATION OF LIQUID SHOWING
_"+ DISPERSION OF LIQUID AT DIFFERENT APPLIED VOLTAGES

_.:: (Drozln, 1955)

,_;'. The term "electrosCatic atomization" can cover a variety of

i+ different procesaes with respet:t to flc_ rate, electric potential and

)_ droplet slze. The process involving a flow rate of up to 3 £pm with a

_ single nozzle _stng a voltag_ on th_ order of 100 kv has been applied for

!; electrostatic paintings in industry. A similar technology has been

°_. used for manufacturing a printed circuit in the electronic Industry.

_, The applied voltage in this case is on the order of i0 kv and the

e,/,

00000001-TSB06



12

correspnndin8 flow rate £S extre_y small. Th£s process £m senerally

per£ormed in a vacuum. SiSutf£cant Work on electrostatic a_omizatton

has alaO been done _or oil burner applications.

Many different observations have been made which may be uSed to

e_platn the droplet formation mechanisms associated v£th electrostatic

; atomisation. Vonnesut and Neubauer (1932) atomized water, susar solutions,

lubricating otl, and alcohol. They observed that there was an upper l£mit

of liquid electrical cofiductivity beyond which no atomization could be

achieved. Also Chey found that monodisperse sprays were not formed with

: the negative potential_on the ltqutd. A similar experimental observation

: has been utade by many invescisaCors such as Zeleny (1914), Macky (1931),

Bolllnl, ecal. (1974), and Nawab and Mason (1958). Generally, they

observed that the electrlcal voltase required to dislnteErate the liquld

Jet depends on the electrlcal property of the liquid. For example,

fine mists can be produced using liquids such as water, alcohol and dibutyl

phthalate, all of which have a relatlvely low electrical conductivity.

However, some organic liquids such as benzene and carbon tetrachloride,

which have low dlelectric constants were found difficult to disperse by

this method.

The basle mechani_n of liquid disintegration by electrostatic

charge is that when a high electrlcal voltage is applled, the liquid

becomes hiShly charEedand pressure due to the electrostatlc forces

increases. When this pressure exceeds the Surface tension, the liquid

surgace becomes unstable. Because of the rather complex physics involved

in the droplet dispersion mechanisms, no firm theotetlcal models have been

established yet. Pfeiffer'S (1973) model is such that the dispersion of

the liquid by electrostatic atomization takes place due to the detachment

; of a _Ingle drop from the capillary tip. HoWever, this model has not been

proven experlmentally.

|

" ....... 00060001-TS B-07



,1

) '

-_!. 13 '

{ Ultrasonic Atomization

(1 This technique is based on the principle thac a liquid droplet
_ is produced when powerful, high frequency sound waves are focused onto the

liquid surface. The liquid may be present in large volumes and contained

_!! in a reservoir, but the technique ca_ also be applied to very thin films.
A schematic diagram of this type of atomizer is shown in Figure 6. In

'_,'i general, .a certain form og concave reflecto_ such as a curved barium

_ i titanate transducer is used for this purpose. The wave propagation sen-=k i

"_ erated by the transducer is then transmitted into the liquid..If this

_i] wave streflgth is greater than the surface tension, the liquid is disinte-r!. grated.

:,_i_ The droplet formation mechanism in chls type atomizer has been

_ _ generally considered Co be due to the formation and Subsequent collapse of

_:! cavities caused by the Inte_slve wave. However, Hidy and Brock (1970)
_,._

_i stated that the Surface of a liquid over an acoustic transducer generally

_' appears to be a layer. If the amplitude of the ripple on this layer
;il becomes large, these crests may break co form droplets. Thus, they
=_
_ further Stated chat the droplet size would be related to the ripple

._i_I wavelength which in turn is controlled by the vibration frequency.

o". go

--yl

i '

/;'

={," FIGURE 6. SCHEMATIC DIAGRAM OF ULTRASONIC ATOMIZER

4,
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Spinn£n S Disk Method

Spitlnin$ dielks and tops produce droplets of moderately uniform

size by feeding a liquid onto a rotating disk from which the l_.quid is

dispersed radially into renal1 droplets by the centrifugal force. In

general, liquid is fed to the center of the disk and flows to the edge

_he_e it acc_ulates until tt:e centrifugal force, which increases with

increasing liquid at the edge, overcomes the surface tension and disperses

the liquid. A schematic diagram of the spinning disk is depicted in

Figure ?.

The spinning disk and top have probably been the most generally

succestful methods for producing monodisperse sprays. One operating

problem is that thls dispersion produces undesirable secondary sprays

(satellite dropletS) as shown in the figure. However, these satellite

droplets can be separated dynamically from the larger primary droplets.

This is usually done by a separate Glow of air near the disk, into which

the satellites move but beyond which the larger primary droplets are

thrown.

The spinning disk method is capable of producing a moderacely

monodisperse spray over a wide range of drop size. The mean drop size

depends upon the surface tension of liquid_ liquid density, disk

diameter and rotational velocity of the disk. The averaSe drop size

ranges approxlmately from 10 to over 200 um.

----, 00000001 -TSB09
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_+: FIGURE 7. SCHEMATIC DIAGRAM OF SPINNING DISK WITH A

.... SECONDARY FLOW FOR P.EM._)VINGSATELLITE DROPLETS
+'t
++

' Vapor t_at ion-Condensation Technique

t Thls technique involves atomizing the liquid, vaporizing it,

_ and then subsequently condenSinO the vapor. The liquid formed is generally
i

;?+ atomized by a pressure atomizer. Si_e the spray initially produced in
i ,:+i

: this way iS polydisperse, the spray Is vaporized by heating it above the

- boiling point of {:he liquid, usually by a combustor or an electrical

heater. Then th,_ vapor is mixed with a stream of hot air containing a

- regulated number of condensation nuclei. The mixture of air vapor and

nuclei passes through a section in which it is slowly cooled, becoming

'- supersakurated and coddensing u_igormly upon the nuclei to form uniform

droplets.

L

i :
I

+ ,., ....
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This technique is currently in use for spraying certain

insecticide chemicals. As a heating source, a pulge Jet or a recipro-

caring _ngine is used. The liquid capacity rangeb up to 40 gallons per

hour. No data on droplet size or monodispersity are available, however.

Another application of this technique is for producing a cloud of smoke
4.

:i__'. for the military purpose of camouflage in the battlefield. For ob-
,!i;

_, _cUration i_ the light wavelength range of 0.4 to 0.8 _m, the droplet

:_',_ 81ze is desired to be in the same range.

!_ A qualitative size estimat_ may be made for droplets produced

_;, by the evaporation/condensation teehn£cue bv usinl the following experssio___n

'1',i Of Lansmuir (1942).

D3 38.4 Zqt/2
)3/2 3/2_" (i + m° v

_2 whereI.
i D - particle diameter, cm

•_. Q - liquid mass flow rate, g/see
t',

_. mo - mass of admixed air per unit mass of liquid
i_I__! Z - function of the heat content o_ the vapor

.[_ escaping from the nozzle

_, v - velocity, em/sec.

i::
_: It should be noted that the drop size depends on the heat content of the

.': vapor. His expression, however, does not include the number of nuclei

._: which is generally known to be an important factor in determining the

_": drop size._in the condensation process.

!ii Miscellaneous Techn%que s

2:1
Atomization of a Solution

' If a relatively nonvolatile liquid is dissolved in a volatile

i solvent and the solution is atomized, the solvent material will evaporate

':+::': upon encountering the surroundin_ air, thus, leaving only the nucleus

h,

f,:
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droplets _oneistinS of tha nonvolatile solute. _Is technique requires

that the liquid to be dispersed be mixed or dissolved in a solvent,

thus being li,ttted to the use under the above requirement. If the original

droplet diameter before evaporation is do and the solutto_ deneity i_

0 o, the final nucleus droplet size is calculated by the followin$ mass

balance equation

d3 .. 'e
6' Oo o X ._. D30 (2)

so chat

D- do 1/3 (3)

where X is mass concentration.of the solution and P is the density o£

final droplets. It should be noted that this technique in general does

not provide a_good monodisperse spray although the mean size may be

changed.

A similar technique has been applied to the atomization of mono-

disperse suspensions in water. This type of method first used in the

medical field is now widely used to spray monodisperse solid particles

such as polystyrene latex particles manufactured by the Dow Chemical

Company. Salt, sugar and methyl_ne blue dye dissolved in water also have

been used to form aerosols of the solute material. One precaution if:at

should be taken is to keep the concentration of such solid partlcles

in the solvent relatlvely low to avoid possible a_lomeration of suspen-

sions in the solvent.

Aerodynamic Atomization

In this type of atomization, compressed air is used to break up

the liquid into droplets. For this reason it is often called the air-blast

type atomizer or the two-fluid nozzle. This method is probably one of the

simplest and the most commonly used for producing droplets for nee in

many areas such as medicine, combustion, and agriculture. Breakup of

liquid is primarily achieved by the complex interaction between liquid and

air. Green and La_e (1957)qualltatlvely explained the llquld breakup

' ° ' O0000001-TSB12
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mechanism involved in aerodynamic acomi_ion by dividing it into three
9'

stages. The first stage is an instability of liquid _urface d.e to

various aerodynamic and shear forces creating s_il ripples. Then these

ripples are transformed further into fine ligament which are separated from

)" the main stream of liquid. Finally, these l£sa_ents ewngually form

droplets due to the surface tension.

Although these qualitative explanations appear simple, the

, nature of the actual disintegration is very much complex and it is very
,-v
_,: difficult, if not impossible, to model the complete picture of the

_i disintegration mechanism even for a simple configuration. Due to the

_' complexi_y, the size off the droplets formed by the aerodynamic

; atomization is very widely dispersed.

!i There are many theoretical analyses for predicting the mean

_ droplet size (Rizkalla and Lefebvre, 1975; Ga_ner and Henry, 1953;

_i Ingebo and Foster, 1957; Wigg, 1964; Nuklyama and Tanasawa° 1939).

_ Based on _any experimental test results for small alr-blast atomizers,
. 2i;

_° Nuklyama and Tanasawa suggested that the mean volume/surface diameter,

_' D in microu, can be written as
o

_34
={i D - 585 u )1/2 (U)9120 IO00QL 3/2

-_ o (u-v) C_ +397 --_ ( % ) , (4)

v. where

:," u = air velocity, m/set

._:. v = liquid veloclty, m/sec

:. a - liquid surface tension, dyne/cm

_ cm3_" 0 " liquid density, g/

U - liquid viscosity, g/cm sec

_.--._:_ QL/QG = flow rate ratio of liquid to gas.

_" The conditions under which Equation (4) is valid are known to be as

follows

_' 20 < o _ 70 dyne/cm

0.005 < _ < 0.5 poise

cm3_. 0.7 < 0 < 1.2 8/ •

/.'

2

$,

Y

......•°,_ °,...... ..o . , "o .._,'_ ,..,_,,o " _. _" _'_-_-__:'--'_-_'-_-,
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A rather LarSa numbQyo_ Qq_t_on_ to e_prQsent dy_p Q_ze dlscribu_Ion

_,_ haVo alao boon susBested by v_rious InveoCigators. However, most eE the

work was based on e_forts to obtain seed flts be_ecn experimental

sets of data and emplrlcaleq_ntions. Further, both the predicted and
I

the m_asured dispersion o_ the sprays produced by aerodynamic atomization

_ is quic_ poor. _or this roaoon, no further discussions will be maOe

_ regarding this type of technique.

_. Swirl Atomizers

_:, In addition to the spinning disk atomizer, the swirl chamber
...._: type makes use of centrifugal forces. This type of atomizer consists

i of a conical chamber with a small orifice at the vertex. Generally,

_., liquid is introduced tangentially and allowed to swirl. If liquid

_i!, pressure is high enough, a vortex is created and the liquid leaves the
_" chamber as an unbroken film with a tulip or cone shape, de'pending on

_! the pressure. If pressure is sufficiently high, the liquid breaks up
-E!
_,_. inca droplets. Green and Lane (1957) stated chat surface tension,

_I viscous forces and the interaction of the liquid with surrounding air

__t are the main controlling parameters to disintegrate the liquid into
droplets.

Watson (1948) showed the e_fects of pressure and chamber

dimensions on the droplet size. According to his data, the smeller the

swirl chamber becomes, the finer the droplets that result. However,

the flow limits are quite restrictive if small drops are to be formed.

Another undesirabie characteristic is the inability co get sharp cutoff

of spray due to dribbling.

AtomizationUslns LiouefledGas

Sprays of fine mists can also be generated by first mixing a

liquid wlth liquefied gas under pressure and then expanding the mixture

through a nozzle as used in many applications such as for commercial

aerosol cans. Despite the wide use of this technique, very few

.............. ' ' ' 00000001 TSB14
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systematic studies ere available reSsrdin$ the mean drop]Let size s_d the

monodispersity. Liu (1967) measured the size distribution of sprays

obtained on several samples of cans _ontainins mnall amounts of dioccyl-

phthalace and freon gag, The measured size distribution was found co be

spread rather widely. Further. he found that the mean droplet size was -

below 1 _m. He also found chac the mean droplet size cannot be con-

trolled by the pressure. It is noc known how the droplet Size can be

increased if an increased amount of l£quid is mixed with a gas propellant

or iX the nozzle design iS changed,

_Thistle Type AtomiZers

Although similar to the ultrasonic atomizers using a transducer,

liquid can also be disintegrated by directlns high p_essure gas into the

center of a llquid Jet, thus creating Strong sound waves inside the nozzle,

as shown in Figure 8. Due to the sound field created by the focusing

air flow, this type of atomizer is frequently called the whistle or stem-

cavity type aton_Lze_. This type of atomizer is generally operated at a

sound frequency of about 10 kHz with a resultlng liquid droplet size on

the order of 50 _m.

tzpdd
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FIGURE 8. SCH_qATIC DIAGP_I OF THE WHISTLE TYPE ATOMIZER
SHOWINGTHE SOUNDRESONANCECAVITY
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_ny commerci411y manufactured scom£zers of ch$8 type are

available £nclud£_g chose by Ascrobeam, Inc., Sonic Development Corp.,

and VApo Productt, _r£ch fiow rates up to 1200 sph. One of the disadvan-

tages in these atomizers ts chac the drop size cannot be easily ControLled

unless the nozzle dimension is changed. W£1¢ox and Tats (1985) studied

this type stozzle systematically and concluded that the sound field _as

not an important variable in the atomizing process. Topp and EiSenklam

(Z972) therefore, suspected that all the whistle atomizers simply

operate on a s£m£1ar principle used in cvo-fluid types. AS discussed

previously, a liquid is integrated primarily by the aerodynamic in-

teractions becveen gas and liquid in the twin-fluid acom£zers. _o

reliable or proven theoretical analyses on the performance of the vhistle

atomizers seem co be available.

Atoa_zation Us_na Spark-Discharge

By introducing electrodes inside the liquid level and applying

a high pote_tial across the electrodes, the liquid is knovn Co disintegrate

into fine droplets due co the spark-discharge.---A small scale experiment

was performed by Andrus and _alkup (1963) co investigate this phenomen_

pri_arily for a-domestic burner application. Droplets having the mass

median diameter of about 100 ,m droplets could be produced. However°

the results were reported to be cachet erratic and-not repr Jductble-_

The sizes of the produced sprays were also found to be quite _ide_y

dispersed.

0OOOOO01
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; AGRXL_/LTU_L AVZATZON SPRAY APPLICATIONS

This Section reports the information collected from the literature

survey on the properties o_ liquid ,utterial, and the ranges of drop size

_ and application rate commonly employed in agricultural aviation spray appli-

cations. The type of chemicals, drop size, application rate and properties

of the liquid will be discussed in that order.

!.

.... Pesticide Formulation Ty_es

_i PesClcldes as a generml term is used to d_scribe & number of

_:_: dlffer_nt insecticid. , herbicideS, fungicides, etc, Most of the original

=: chemicalb used for pesticides take the form of either solid or liquid and

: then are dissolved or mixed in a liquid. Depending upon the phases of the

_. original material, they could be grouped into concentrated solutions, water

_ soluble powders, water dlSper_Ible powders, and emulslfiable concentrates.

The _oncentrated solutions are the liquid chemicals which are

i dissolved in water. One advantage to the solution formulations is that

_" _hey are always considered to be homogeneous. Chemlcal powders which are

-_ soluble in water can be £ormulated into concentrated aqueous solutions with

_ the same advantages as the solutions JuSt described. _ettable or water

;. dispersible chemical powders ate those that are not considered to be solu---

!: ble in.water. Therefore, wettable chemical powders generally require agita-

-i tlon after mixing, until they are sprayed.- Some po_d_rs come in the form

of very fine or colloidal size and, therefore, will remain in suspension

j" and require no agitation. Pesticides aS emul_iflable concentrates usually

iii_
_:. consist of organic solvents containing the active ingredients which are

-; then combined with emulsifiers before being added to water. Concentrations

of this form will not separate, requiring no agitation before they are

,i. applied.

Most pesticide chemicals which come in one of the above forms are

further dil_ted wit_ a_ inert carrier. Carriers offer the advantage of

_., easy addition of spreading agents to the pesticide as well as wetting

UUUUUUUI lOk._UO
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aSents _d-deposit builders. A carrier also reduces the amount of act£ve

chemical insred£ent required to obtain the same level of efficiency, and

_avors dilution to as sreat a degree as is reasonably possible.

Water is _ound to be the most common carrier used owing to its

lo_ cost, safety and _aSe of application. Another common carrier is oil;

and with the many different types available, a variety of solutions may be

developed. Foam sprays are sometimes used for pesticide application,

providing add/tional advantages over common carrie_s. The pesticide is

dispersed or dissolved in an aqueous alkali metal silt_ate foam and can

be applied as droplets or as a continuous layer. The advantages of the

foam sprays include a low liquid volume requirement, accurate placement

of the pesticide, the reduction of drift, clear visibility on the target,

and 8ood adherence (Hanson, 1973).

As already discussed, formulations may also contain supplemental

additives such as adjuvants and diluents. Some adjuvants, that is emulsi-

fiers, that are largely inert but will often influence physical properties,

include wetting and spreading agents, adhesives, and emulsifiers. These

additives are used for lowering the surgace tension of the liquid, allowing

for easy disper_iOn and easier spreadinE (DeOng, 1953).

Considering major crops being produced across the United States,

the prohibitively large number of currently available pesticide types

have been narrowed to those most commonly used. _qith the aid of statistics

from the National Agricultural Aviation Association (Collins, 1979), Table 1

was co_piled.

TABLE i. MOST COMMONLY USED PESTICIDES IN U.S.

Insecticides Herbicides Fungicides

Toxaphene Trifluralin Balan
Methyl parathion DSMAand MSMA Sulfur
EPN Propylene
Carbofura_ Ordram
Disulfoton 2,4-D
Parthlon A_razlne

Carbaryl Propachlor
Malathlon Alachlor

Toxaphene

00000001-TSC04
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Drop Size

Adequate drop size which is desired for aerial applications is

found to be dependent on many factors, such as the type of insects, plant

or fungus. In addition, aircraft speed and altitude, toxicity of the

chemicals, and weather conditions contribute to determining the optimum

drop size. All these factors can, however, be further narrowed down into

two general categories, one for maxin_Lzing the effectivehess of pesticides

which is primarily governed by the types of insects or c_ops, and the

other for _Ln_Lzing the drift which otherwise can cause da_ges to any
_-.

susceptible species nearby. The drift also results in a loss of the

chemicals.

Fo_-an obvious reason, _pray effectiveness is largely determined

by drop size. Many studies on the optimunt drop size under various conditions

have been performed (MacQuaig, 1962; Burnett, 1962; Mount, 1970). Akesson

and Yates (1974) stated that the most effective drop size for insecticides

: depends on the insect size. Smaller droplets are ,_re active in the gut of

insects and also in external contact. Smith and Goodhue (1942) found that

: droplets of less than 25 _m are most effective for controlling small instar

of mosquito larvae. For larger insects llke locusts, drops of about 100 _m

were found to be more effective (MacQualg, 1962). The drop sizes that were

found effective from some selected research for several insects ar_hn_

in Figure 9.--

Another importa_t consideration for spray effectiveness is the

:..... depth of penetration inside crops or forests, or the abillty of drops to

;- be deposited on breeding sites or plant foliage. According to the particle

dynamics, the dro_ inertia should be minimized for maximizing the effects.

Therefore, drop size is preferred to be smaller than about i00 _m. Espe-

: cially this is found to be true for the forest applications regardless of

the type of insects. Indeed, a recent test (NASA, 1977) indicates that for

a pesticide which depends upon contact for effectiveness, droplets or

partlcles should range from about 75 to 100 _m in diameter. For appllcatlo_

of pesticides by "ultra low volume rates" under which formulated pesticides

00000001-TSC05
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'. Drop S:Lze I, _m .

__i Insects/Usage 1 10 100 1000 References

!o,.

= :_"_ Locust _ _ MacQualg (1962)

_}_ Tsetse Fly -- Burnett (1962)

_. Mosqultq£__ --- Akesson and Yacks (1974)

°¢!i' Mosquito Larvae _----- Smlr.h and Goodhue (1942)

!" Various Adult _ Mount (1970)

._. Insects

-_o_._ Various Larvae q-- Himel and-_core (1969)
_"" & Adult Insects
;.'_,,

_" Himel (1969)l,i Various Adult _.---
_; Insects

} FIGURE 9. EFFECTIVE DROP SIZES AS REPORTED BY VARIOUS STUDIES
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are sprayed without bein$ diluted wi_h _aCer_ the size og particles tenses

from 50 co 100 _m in size. Actually, the smaller the size the more desirable

for leu wasteFUl distribution, coverage, and ef_ectiveness of the chemical.

As drop siz_ decreases the drop inertia becomes too small to

settle on the ground rapidly. Thus, these drops tan drigc away before

settling ouc. Extremely small droplets would remain suspended in the air

for a prolonged period of time or even evaporate. These small droplets

which do noc readily settle ouc are defined as an aerosol. The extent to

which these droplets drift depends upon the aircraft altitude and the

weather conditions, in addition to the drop size. Although iC may depend

upon the degree_ tolerance for drift, the upper size limit for aerosols

may lie in the neighborhood of. lO0 _m. From the discussion on the effective

drop siz_ and on th_ minimi_ation of drift, it is obvious that the drop

Size to be used has to be compromised between these two contradicting

characteristics.

The drop _izes currently employed in the aerial application of

_estlcideS are found to be primarily dependent upon the toxicity of chemi _

cals, the area to be covered, and th_ period of chemical degradation.

Akesson and Yates (19Y4) stated Chat fine sprays whose Sizes range from

100 to 300 _m in diameter are currently used for most forest pesticides and

large area applications. This size range is also used for agricultural

insect pathogens. This small size range insures a good coverage and also

rapid reeu%ts d_e to large surface area for a given amount ofmaterial_

Moderately toxic materials are, however, sprayed with particle sizes of

about 300 to 500 _m. For highly toxic materials which require a maximum

drift control, drops up to 1000 _m are used. However, drops larger than

lO00 _m are no_ commonly used owing to their inability to provide unifor_

coverage and avoid waste.

Table 2 summari_es the average drop size currently used in agri-

cultural aviation applications. The listed drop size can, however, be

somewhat varied by the material density, wind velocity and altitude of

the airplane. It is noted that many of the most ef_ecCive drop sizes for

various insects, as shown in _igute 9, and the sizes listed in Table 2

. - -.............. O0000001-TSC07
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TABLE 2. RANGES OF THE AVERAGE DROP SIZE
COMMONLY USED

Z, ,l

:: Drop Size
i., Co_dition or Usage Examples Range, _m

::* s Large Area Application Forest pesticide
•- Agricultural Insecticides
:_ • Low Application Rate Vector and other low
,;;' 100 - 300
:,! • Low Toxicity toxicity material -- --

_. • Rapid DeEradation
i',

-_*" • Moderately Toxic Most moderately toxic
__: 300 - 500

-i_ • Good Coverage Desired agricultural chemicals

3;- • Toxic Restricted herbicide
,_ 500 - 800
_., • Good _overa_ got
_: Essential

.._ • Highly Toxic Phenoxy acids or other
_ highly toxic material 800 - lO00
_! • Small Area Application

°.

_:: '

,q; ,

"' "-:' "_':-_':-.......:-........................ +-_=............:......................................................" 00000001-TSC08
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cover the entire size range from the eubmicron size up to 1000 _m, Consi-

dering that most _hemicalt uJed for aSricultural purposes are moderately

toxic and that uniform coverage is g_nerally a primary requirement for most

applications, the drop size most commonly used seems to be in the range of

25 to 500 _m in diameter.

Application Rate

Like the drop size range, the application rate also varies very

widely in usual agricultunal aviation applications, in general, the_ap_=

cation rate is found to depend upon the type of pesticides, the type of

formulation, the type of aircraft, toxicity of che_icals, and even the drop

size employed. The lower limit of application na_e occurs when small

amounts of low toxic substance is sprayed over a large area using a small

drop size. A typical application rate for this so-called "ultra low volume"

iS on the order of 1 oz/acre. However, the application "ate can be as high

as 20 gal./acreo typically when very coarse drops are sprayed over a small

area. The drop size dependence of the application rate is primarily due

to the fact that a spray of _mall drops can cover a wide swath while coarse

drops would settle in a very narrow swath width, thus requir_,ngan increased

application per unit coverage area. In order to incorporate th_ above

application rateg into the current progrem, information on the spraying

rate is also requi_ed. It is _ound that an aerial spraying is done over a

large area typically at a rate of about 10,000 acre/hr, while for the case

in which a small area is covered u_in8 coarse sprays, the rate is about

30 acre/hr.

In conjunction with the drop size ranges shown in Table 2 the

collected information on application rate has been summrized in Table 3.

The _iow rates as listed in the table have been obtained by multiplying

the application rate by the spraying rate. It is interesting to note that

while both application rate and coverage rate are widely varied, the

calculated flow rate falls into a narrow range of 5 to 40 _pmwith an

average rate of 30 _pm or 450 gph.
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• TABLE 3. RANGESOF APPLICATION RATES CO.ONLY USED

Calculated Typical
Application Race, Spraying Rate, Flow Rate, Drop Size,

gal./acre acre/hr gal./h_ (_pm) pm

1/128 I0,000 78 (5) < i00

I 300 300 (20) 100 - 300

5 i00 500 (33) 300 - 500

i0 75 _ 750 (50) 500 - 800

20 30 600 (40) 800 - 1000

Liquid Properties

A_ discussed previously, most pesticides have been found to be

sprayed combined with carriers such as water o_oil. Therefore, properties

of the liquid chemicals and the application rate can vary widely depending

upon the degree of dilution. Generalization of the liquid properties is

further complicated by the fact that supplemental additives such as

spre_ading agents, adhesives and emulsifiers are often added to the solution.

Physical properties of some carrier liquid materials quoted by Butler, et al.

(1969) are listed in Table 4. It can be noted that density of most carrier

liquids ranges from 0.8 to about 1.25 g/cm 3. Surface tension is found to

be between 20 to 30 dyne/cm. A wide range o_ viscosity, however, exists

ranging from 0.3 to abo_t 10,000 cp. With the t_o llquids having an extremely

high viscosity exclvded, the viscosity for a typical liquid would range

from 0.3 to about 500 cp.

Although intrinsic properties of the original chemicals do not

greatly affect the overall combined properties of the final solutions,

vapor pressure of the material can be important especially in relation to

its toxicity. For example, the vapor pressure of Malathion as listed in

O0000-O01-TSClO
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...._:_, TABLE 4. PROPEITIES OF SOMELZQUIDS USED IN AGKICULTURALAPPLICATIONS

F'g i.,

......................... ' •
_ Surface

:,4 Density, Tension, Viscosity,

i_._,_! Liquld S/cm 3 dynes/cm cp at 20 C Vapor Pressure

,. (20 C) mm.Hs at Cemp, ¢

:,_ Acetone O. 79 24 O. 32 195 20

° ":'"_ Mechanol 0.8 22 0.6 100 20

= ;_ B_nzene O. 9 30 O. 65 80 20
.it',
, Water I.0 72.8 i.0 18 20

;_ Ethanol O. 79 22 i.2 47 20

°_: Gas_llue 0.68 -- O.35 -- --

!:_:_ Turpentine 0.867 -- 1.49 3 20
,x-"

_i" Kerosene 0.82 25 2.5 7 30

;'_: Diesel Fuel 0.89 30 i0 ....

:_,,:_. Ethylene Glycol -- 47 20 .....

_ Cottonseed Oil 0.92 35.4 70 _ --

.... Lube Oil SAEIO 0.9 36 i00 ....

_ _7 Lube OIl SAE30 0.9 36 300 1 30

; Castor 011 0.9_ 39 1,000 ....

o, Cort_ _,up --- 78 10,000 ....

._'_ Halathion (95 g) 1.23 32 45 4.0 x i0"s 30

_ : Lindane ...... 9.4 x I0"6 20
_.
o• Pacathion 1.35 -- -- 4.0 x 10-5 20

,,,: 2,_-D ..... i.i x 10-2 25

_; Dursban (75 ?.) 0.97 .... 1.87 x10 -5 25

i:ii Haled (85 g) 1.965 ........

.:7 Fenth_on (93 _) i.25 .... 2.15 x 10-6 20

_:' Captan 1.73 .... 1.0 x 10-5 25

? _ .........

L- .:, 'i

m
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Table 4 ie about 4 x 10 -5 mmHS at 20 C. 2,4-D, on _he other ha_d, has a

" rather high vapor pressure of about 10"2 _nHg (Butler, et a£., 1969).

_ntri_Sic _terial density of most chemicals is found to be approximately

between 1,2 and 2 g/cm 3. In£ormat£on on the intrinsic viscosity and surface

tension o5 these materials, however, is not readily available.

In relation to the overall effective viscosity of a certain type

of u_Lxture, it should be mentioned that this type of formu_ation can have

characteristics of a non-Newtonian-_uid.---.T.hus, viscosity of the mixture

is no longer proportional to the raze of shear stress. Especially water-

in-oil_and some thickeners respond.as nOn-Newtonian liquids, and the

viscosity will decrease as the shear rates increase. For example, a

mixture of 10 percent diese% fuel and 85 percent water is found to have

a viscosity of about 700 cp at a rate of 1/50 second while the value

decreases to about 15 cp at 1/4000 sec. In any case, the viscosity of this

material appears to fall within the viscosity range shown in Table 4.

Sun--at 7

The results o£ literature sut'veys on the drop size, appllcation

rate and properties of liquid material revealed that the formulation type

varies from one type of chemical to the next, and that they are used with

a carrier. Water, oils and foams are commonly used as carriers. Also, a

wide variety of ranges in each of the above _ategories is currently

employed.

The drop sizes currently used range from i00 to 1000 _m in diameter.

If the _ost effective drop size is included and highly toxic materlals to

be applied in a relatlvely small area are excluded,the most commonly used

d_op size can be further narrowed down to the range of 25 to 500 _m. The

average flow rate of the materlal is found to be about 30_pm, with the range

of 5 to 50 _pm. Various formulatio_s have been found to be applied combined

with a large dose of carrier llquld. The ranges of the llquld properties

of the materials are as follow_

Density: 0.8 - 1.25 g/cm 3

Viscosity: 0.3 - 500 centipoise

Surface TenSion: 20 - 80 dyne/cm

Vapor Pressure: 1 - 200 mm Hg.

00000001-TSC12
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ASSESSMENT OF THE CURRENT STATE OF THE ART

Althoush a _onodispersQ spray can be defined mathematically as a

spray consisting of drops of one size, such a spray in reality seldom

exists and is nearly impossible to produce. Generally, a monOdisperse spray

is referred to a spray whose drops ere very narrowly distributed. Thus,

the definition, "nearly monodisperse" is a relative term since a size dis-

cribution of drops which _-aufficiently narrow in one application _y be

considered not monodisperse in another. For that reason, the terms such as

"nearly monodispersa" or "moderately monodisperse" are often used. In

._ this case the choice of the exact criterion for this s_te is sometimes

arbitrary. As already described, a monodisperse spray for _his study is

defined as a spray containing drops 95 percent of which are smaller than

i 1.2 times the average drop size and wlth 5 percent of the dTops smaller

i than 0.8 times the average size.

_ It should be pointed out that even if there exist available

cechnlq_es or devices for producing a spray which meets the moDodisper-

sity criterion, some addiCional problems might have to _e considered.

'_ One is that uniform drops initially produced by such devices can coalesce

quickly to create doublets or triplets. In general, such coagulations

occur when there are a large number of drops occupying a smai_l space.

Air turbulence or other means, such as Bro_mlan diffusion or unequal se_-.

i: cling rates can also cause the primary drops to coalesce. If such coagu-

i; lation takes place to a severe extent, monodisperslty of the drops would

i quickly deteriorate. This problem can be eliminated or lessened by proper

!_"; operation of the devices such as employing appropc_te dispersion air

around the spray. Another problem is that some of the droplets can have

i_ shapes different from sphericity causing estimations of monodispersity

, to be rather difficult. Therefore, it is sometimes necessary to tolerate

a small portion of odd-shaped droplets in such a case.

_: Using th_ background informer±on on the range of drop sizes,

liquid properties and application rates that are currently employed in

the agrlcultural aviation field, and by considering the prlnciples of
,L

im
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! operation f_r ex_glng geghnique_ £o_ p_oducing monodl_p_r_e _pr_ys, ig

' 1_ possible _o as_ea_ the probability of developing ouch Cechnique_ lngo _n

_it: operatio.al _ysgem appropriate Eor the u_e in agricul, CU_al aviation appli-

/ catione. Thi_ eeccion followe thie procedure and as_eo_es the _tace of ehe
.%

, art for each identified techniquQ wigh respect to the requirements. The

specific requirements considered in this program a_ _onodtsperstty of the

"" drop size distrtbutionp range oE the average drop sJ, ze, and ability to
t.

cover the required range of application rates. Among the £dentiEied tech-
:?i"

.... niqUes, only those which produce a monodisperse or nearly monodisperse

,_. spray will be considered; these are: (1) periodic vibration of liquid
i.'i

_: Jet or reservoir, (2) electrostatic atomization, (3) ultrasonic atomization,

_: (4) spinning disk or top, and (5) vaporization-condensation.

_; Periodic Vibration of Liquid Jet
{_: or Reservoir

L

Sprays produced using periodic vibrations generally have excel-

i" len_ monodispersitv whether the technique employs a piezoelectric crystal,

,,: a sound speaker, or some sort of mechanical means. Since each individual

_ drop is produced one at a time by means of a period_c disturbance in this

r'_'i technique, the resulting drop size is not greatly dependent upon the

_. liquid properties. Among the reported dlsperslty, Magarvey and Taylor (1956)

=_: found that only G.2 to 1.5 percent of the drops produced using an earphone-

_ llke vibrator have sizes diffferent than the rest. The converted standard

deviation on a weight basis was then between 0.o00g to 0.0022 which is

_ equivalent to a geometri¢ standard deviation of 1.001 - 1.002. Berglund

,;'! and Liu (1973) measured the geometric standard deviation of the fine

_ sprays produced using a piezoelectric _rystal to be about 1.01. This is

also well within the criterion established for the present program. The
¢:

Ii_ droplets produced by ginek and Dohnalov_ (1967) using a Whisker, as pre-

_! viously described, have a 8eometrlc standard deviation ranging from 1.005,I

_;_ to 1.08.

 !il!
..... = =........................... ............ : ,: :: ................ =2:E_2 2 = _=:
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The e_ze of droplet prod.cad ls siren by the foll_ing formula

which may be readily obtainable by the balance between the mass of dropXets

produced per unit time and the Liquid flow rate. Therefore,

_ D3 "_ 2e dj u , (5)

where D is the droplet size, u is the liquid velocity, dj is the Jet
diameter, and.f is the vibration frequency. From Equation (5), the droplet

size becomes

D- 1.145 . (e)

Hence, the diameter o__drops chat can be produced in practice depends

only upon the flow _ate and frequency of the pulse arid is not dependent

on liquid properties. Implicitly, this assumes that the liquid stream is

integrated into one droplet upon each pulse. For chls reason, a high ampli-

tude may be necessary for a highly viscous liquid. Since the amplitude of

pulse is easily varied with a standard pulse generator, thls problem is

an operatfns condition rather than design criterion and Equation (5)

still remains valid £or predicting the drop size.

If the volume of droplets is equal to the volume of the cylin-

drical Jet per wavelength, _, we have an expression for the frequency as

f - u/_ . (7)

For opt_num operating conditions, Rayletsh's Linear theory (L'79) on the

instability of a liquid Jet is utilized. The optimum wavelength of vibra-

tion as a result of his theoretical study is given by

'_opc a 9rj , (8)

where _opC iS the optimum wavelength og vibration and rj is the Jet radius.
Equation (8) was derived for a nonviscous, incompressible, liquid Jet

sprayed into a vacuum. From t_le consideration of surface energy, Plateau

(1873) derived

_opt m 2_ rj . (9)

00000001-TSD01



Schneider and 8ev_rtcks (1964) experimentally determined that monodisperse

sprays can be produced in the wavelength range of

7rj < _ < 14rj .

Berglund and Liu (1973) also found a similar range of wavelength chat can

produce uniform droplets as shown in Figure 10. P,aJagopalan and Tien (1973)

experimentally found that there is always a Certain minimum threshold

frequency required below which no uniform droplets were foraed and above

which unifocm droplets were produced. For a high viscosity liquid, they

found the threshold frequency to be

fth = 0"7lope ' (i0)

and for low viscosity liquid,

fth = 0"4fopt ' (ii)

where fch is the threshold frequency. They also found that mnpllcude of

dlscurbance has very little effect on the production of monodisperse drop-

lets. This can also be shown in Figure i0 in which uniform droplets can be

generated over an amplitude of several orders of magnitude while the opti-

mamwavelensch range is very. narrow.

_igure ll Sunmarizes the drop size range chac could be covered

by the periodic vibration technique showing that essentially a _ide range

of drop sizes has been already ex_erimentally demonstrated. It is important

to note in the figure that drop sizes smaller than about 50 um can be best

produced using an eleccrostrictive transducer such as piezoelectric crystal._

A periodic acoustic sisnal produced with a sound-speaker type vibration is

well suited for producing drops larger than 50 am. Of course, these two

dis¢inccively Separate ranges are due co the difference in the vibration

frequency which in turn determines the drop size.

The flow rate obtained in the atomization using a periodic vibra-

tion of a liquid Jet or a liquid reservoir is extremely low. For example,

a combination of frequency, 700 kHz, and drop size, 10 _m, yields a flow

rate of only 0.022 cc/min and a combination of 10 kHz and 200 um results

00000001-TSD02
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Drop Size, _m

Inves _tsators 10.. 100 1000

PIEZOELECTRICCRYSTALS I
70-700 kHz

Berglund and L£u (1973) ' '

20-._00 kHz

St:r_m(1969) I I i

2-20 kHz

Fulwyler, ec al. (1973) , l

ACOUSTIC SIGNAL ), 0.3-2 kHz

Dabora (1967) ' '

_0.4 kH_

Magarvey and Taylor (1956)

0.3-30 kHz
Lindbald _nd Schneider (1965) , !

9-11kHz

Erln and Hendrlcks (1968) J
I

FIGURE 11. RANGEOF AVERAGEDROP SIZES COVEREDBY SPRAYERS USING
VARIOUS PERIODIC JET VIBRATION FREQUENCIES
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in a flow rate of 2.5 cc/m£n. Since these flow rates are not sufficient

to be used in a practical application, it is necessary to seek ways to

increase the flow rate. One possibility will be to increase both the

vibration frequency and thQ flow velocity, using the relation shown by

Equation (5), while the wavelength of the signal is kept within the

Raleigh's crlterlon_as given in Equation (8).

Figure 12 shows the calculated flow rates against the drop size

at elevated frequencies. It is seen that for drops of about 250 _m pro-

duced at a frequency of i00 kHz, a flow rate of 50 cc/mln can be achieved.

Compared with the flow rate of_30 gpmwhlch is commonly used in aerlal

applications, this requires about 600 tubes. If a frequency of i000 kH7

is employed, the required number of tubes, however, will reduce to about

60. A design for such a system consisting of multiple tubes can be such

that many tubes he mount_ having a common vibrator rather than installlng

many individual units. It is also possible to design a Large perforated

plate mounted on a shallow llquld reservoir and t_e_ _he reservoir wall or

bottom can be vibrated.

Electrostatic Atomization

As previously discussed, electrostatic dispersion of a liquid

involves a variety of processes, the applied electri_ potential, and

liquid properties. Generalization of-_he droplet size _ange is not straight-

forward._ Another problem associated with this technique is that most pre-

vious investigations have been concerned with the basic mechanisms for

droplet formatio_ rather than with the monodisp_rsity-of the droplets or

the droplet size range. In general, the size of d_ops produced by electro-

static atomization depegds on the applied voltage, surface tensiofl of

liquid, capillary tube diameter, flow rate, electrical p_operties of liquid

such as dielectric constant and electrical conductivity. These effects

can be discussed in terms of flow rate and applied voltage as well as in

terms of industrial applications.

_" ......... o o o _3 ,,o'o .... _.-,-o--,- ::
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The electrostatic a_omization methods commonly used in the elec-

trostatic painting industries uses the painting surface aS one electrode, and

involve a relatively high liquid flo_ rate wich_ high voltage. _low rates

up co about 1 gal./mln, can be sprayed using voltages of up to 100kv. The

liquid iS generally pressurlzedand fed into the atomizer. Droplet size dis-

tribution Of the Sprays produced under these conditions are rather broadly

dispersed, although no quantitative experimental data are available.

When the liquid is fed into the nozzle at the atmospheric pres-

sure, the liquid flow rate is usually very much smaller than that dis-

cussed above. The typical voltage required in this case is on the order

o£ 10 kv. This process, however, produces a wide range of the average

droplet Size between 0.1 to 1000 _m in diameter and their disperstty is

known to be relatively narrow as confirmed by a high order Tyndall Spectra.

This type of atomizing method has been widely adopted for most laboratory

research.

In mlcroelectronlc circuit Industrlas, a similar t_chnlque is

used. In general, the liquid mat_rlals, or often times molten metals,

are sprayed onto circuit board under vacuum conditions. The llquid flow

rate is extremely small, ranging only up to 4 cm3/hr. The applied voltage

is typlcally about i0 kv. The reported droplet size ranges from 300 to

600 _m in diameter (Bolllnl, et al., 1975) with no available information

on th_monodlspersity.

For a theoretical_nalySlS, Zeleny (1914) calculated the electro-

static pressure exerted by a liquid. For a spherical drop, he gave an

equilibrium _quation of various pressures as

2o V2

F p"P ' (12)8_rp

where V is the applied voltaSe, rp is the droplet radius, o is the surface
tensio_ of the droplet, and P is the excess pressur_ inside the droplet.

As the electric voltage increases, an equilibrium nO longer exists.

Although calculation of the exact number of electrical charges in terms

of the applied voltage is complicated due to the nonspherical shape of the

......... 00000001 -TSD07
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• droplec aC Che end of che tip, Zeleny said _nsCa_iltcy Cakes place when

che follow,aS condtCiou is meC: V2 - Crp_; where c is a consCauc depending
! on the shape of the droplet. Thus, if the electric volcaSe becomes exces-
i

i-" siva, the liquid surface starts disintegrating.
Later, Vonneguc and Neubauer (1952) predicted the _ollow_ns

particle size by considerinS the balance between the electrical energy and

the surface energy, si_Llar co Equation (12):

i= rgk_kq! li/3
_:i_ D- aL4_ q2J ' (131

I where q is the coral number of electrical charSes, q is the volu_e of-the

!_ liquid reseZ_roir, and k is a constant. The number of p_rticles produced,

n, was given by_ 2
n - _9.__ (14)

i_ 3kVo "

i Although E_uaClons (13) and (14) are one step above Zeleny's analysis,
i
b they still contain an ad_ustlng constant, k. Further, these equaclons
!

have noC been experimentally verified.

Due Co relaClvely few quantitative studies and lack of compre-

ss. hensive understanding of the basic principle, Ic is rather dlfficul£ at

present Co assess the flow rate chat can be achieved. For a reasonably,_

monodiSperSe spray, the flow race should be maintained aC an _xCremely

b-i, small _ate and a scale-up for such devices can pose some difficulties.

Another drawback of chls technlque le that both the operations and charac-

teristics o£ the produced sprays are slgnlflcantly dependent on the elec-

•_ Crlcal property o£ the liquid. AS already discussed, some orSanlc materials

_ such as benzene which is currently used a_ a carrier _or aerial appllca-

_-_i: Cton, cannot be dispersed into drops• No further consideracionwill be

given Co this technique _or these reasons.
z
e

| ,,

i
I
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.................... 00000001-TSDO8



Ultrasonic Atomization

Sprays produced based on the principle of ultrasonic atomize-

tion technique seem to attain a relatively narrow dispersity, although it

might be less satisfactory than chat provided by the vibrating tube method.

For example, Lens (1962) stated that 90 percent of the droplets produced

were smaller than twice the average size. Compared to the present criterion

that the size of 95 percent of the drofo should be smaller than 1.2 times

the average size, the quality of sprays quoted by Lens is not quite saris-

factory. One way to measure the dispersity of droplet size is to plot the

cumulative percent against the drop size. Figure 13 shows the size distri-

butions of the sprays produced by Doyle, et al. (1967), using the ultrasonic

atomization technique. Based on the original size distributionS, the geome-

tric standard devlaCions for these sprays have been calculated and included

in the figure. The following equation has been used for this calculation:

D84% V50 Z [D84z] 1/2
as -- - -- = (15)" D50% DI6X _D-_6ZJ

where

J = the geometric standard deviation
S

DiZ = the drop size below which there are i percent of
the coral drops on a weight basis.

For a theoretical prediction-for the droplet size, Peskin and

Raco (1963) found chac the acoustic atomization process can be governed

by several nondimensional parameters. Figure 14 gives the droplet size

in te_ms of transducer amplitude a, frequency _o, liquid film thickness h,

surface tension o, and fluid d_flsity 0. The drop size is seen to be a

function of frequency and the film thicknass. For high frequencies, the

drop size becomes a function of film thickness as shown in Figure 15. For

large film thickness, their analytical result reduces Co

,, 3. 2.1/3
D = _ o/0_ o) • (16)
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FIGURE 13. SIZE DISTRIBUTION OF THE SPRAYS PRODUCED

_¥ ULTRASONIC ATOMIZATION TECHNIQUE
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_ GROUPS IN ULTRASONIC ATOMIZATION (Peskln and Raco, 1963)
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....' FIGURE 15. DROP SIZE AS A FUNCTIONOF FILM THICKNESS
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• &1though She relationship 8ivan ia Figures 14 and 15 has not been

ex_erimentally proven, Equation (16) has been confirmed by ma_y experi_ental

studies such as Lens (1962) and Crawford (1955). For a large value of

_a3/2o, Equation (16) is further approximat_d by

V - 0.42 _a . (17)

A wide eange of the average size has teen experime_tally covered

using the ultrasonic atomtza=ion technique. Figure 16 summarizes the drop

size range covered by various investigators. The operating frequency used

in the studies ranged from lO to 2000 kHz. It can be concluded that the

ultrasonic atomization carl cover the low size range of the drops currently

used in agricultural aviation applications.

Ultrasonic atomizers can, however, handle a relatively small

amount of liquid primarily due to the low amplitude of oscillations that

ultrasonic transducers ge_erate. A typical value for the maximum liquid

flow rate for an ultrasonic atomize_ currently in use iS about 1 gph. The

corresponding frequency in this type of atomizer is typically 40 kHz. One

way to increase the flow rate is to combine the principle of ultrasonic

atomization with that for the whistle type atomization as employed for some

industrial purposes. Thus, the amplitude of signals produced initially

by ultrasonic transducers is further amplified due to the resonant effects

created by the hollow space of the horn shape. While this design allows

the capacity to be increased substantially, it will restrict the operating

frequency of the transducer to ofle value. Since the d_op size produced

using ultrasonic atomizers is dependent upon the transducer frequency as

showfl in Equation (16), this arrangement is restricted to producing one

drop size. Obviously, a series of different sets are necessary to cover

the required size range.

Another way to increase the flow rate is again to install many

atomizers in parallel. It is, ho_,_ver, expected that there would be

mutual interference effects of oscillations produced by these transducers.

Since this interference can produce an unwanted spray of polydisperse

drops, it might be necessary to install a transducer in a separate chamber.
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Investisators 1 10..100 1000

Nilcox and Tare (1965) --=--==--=_

i- Crawford (1955) ------

An_onevlch (1959) ,,
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McCubbin (1953) ---

Top_ (1973)

' Muroms_ev and ,
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FIGURE 16. RANGE OF DROP SIZES COVERED BY VARIOUS STUDIES
EMPLOYING AN ULTRASONIC ATOMIZER
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.' Unlike conventional agomizer_ such as pressure typ_ nozzle_ or

two fluid atomizers which invariably produce sprays of very heterogeneous

Size 41strlbut_on, the splnnlng dlsk is capable of producing sprays og very

uniform droplet size. The geometric standard deviation off the sprays reported

by Lippmann and Albert (1967) ranged from 1.05 to 1.72. The standard devla-

;. tlon of the aerosols produced by Phillpson (1973) measured to be about 4

_ 0ercent of the mean. _y (1949) found that the water spray generated by

i: the spinning disk method has a standard deviation off 5 percent of mean

2 size. Further, the 90 percent band width encompassed the size range _rom

_ 0.94 to 1.06 times the mean. The minimum drop size was found to be 0.91

times the mean size. A typical size distribution of the sprays as measured

by May is shown in Figure 17. It should be noted, however, that the

i, satellite droplets are not included in the figure.

i. W --

.'_, ?O --
-_., - Butyl"_tl_lateSWay

_: 40 --
mm

;. I0

=_ o I , I , I

- _ Oro_etOlamel_',Fm

,: FIGURE 17. SIZE DISTRIBUTION OF A SPRAY PRODUCED BY
A SPINNING DISK ATOMIZE_ (May_ 1949)
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For the size range and the operating conditions of the spifintng

disk method, a welL-eseablished correlation exiscs. Assuming the disk is

uniformly wetted, the liquid flows as a thid film from the center o5 the

disk to the edge and accumn_ates until the centrifugal force of the liquid

becomes equal to the attraction force due to surface tension.

The centrifugal force, F, is

v2 = m_ 2_" * m T , (18)
wh_re

It

m = the mass of aAroplet (= _0D 3)

R = the disk radius

G = the-angular velocity of the disk.

The attraction force is proportional to the surface tension. Therefore,

F - koD , (19)

where k is a constant to be experimentally determined. From Equations (18)

and (19), the drop size can ba written as

k (20)D=_,

Various investigators determined experimentally the proportion-

ality constant appearing in Equation (20). For e._ample, Walton and Prewett

(1949) found that uniformly sized droplets can he successfully produced in

the range of

< _D(_-_)1/2""- < _.44 ,
2.67

and Philipson (1972) gave

< QD(2o-_)1/2 < 3.06 .
2.64

Equation (20) indicates that the droplet size ca_ be varied by using a

different di_k size or by altering the rotational speed. For obvious

convenience, the latter method is commonly used to vary the droplet size.

Results from several of the available experimental studies are

summarized in Table 5. Amo_tg these experimental investigations, Nalt_,n ano

Prewett experimentally cover the widest range of droplet diameters, rh_

average droplet diameters in their experiments ranged from 180 to ]000 _,

- - 00000001-TSE01
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w£ch the splnn£n8 disk diam_ter _ansinS from 2 co 8 ¢m. The rocac£onal

speed was var£ed between 600 to 4000 rp_. The ranges of the liqu£d proper-

ties tested were: viscos£cy, from 0.01 to 15 po£se; density, _rom 0.9 co

13.6 g/cm3; and surface cens£on, 20 to 450 dyne/cm, He also studied experi-

menCally the performance o5 a spinning cop of 3 c_ £n diameter. A droplet

s£ze range of 10 co 100 _m was produced. May (1949) studied the spinning

top onto which a pressurized-liquid was fed.-- The liqu£d._he adopted were

water and oil. The mean drople¢ size as _ function of the air.pressure

for his atomizer £s shown in Figure 18. The size of the cop was about

1 inch___n diameter and the ro_aCional speed, wa.s.-ap.proxtmately 4000 rps.

2OO 2O0

_O
WMer

IO0 leo

_- Olll

..

I0 I0

FIGURE 18. PERFORMANCE CURVES FOR SPINNING TOP ATOMIZER
(May, 1949)
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_ • The Liquid flow tare onto the disk shoold be kept r_lactVely

=_ lc.a. When an excessive amount of liquid is attempted co be fed. the fluid

£_erc£a force beGomes important, caus£ns the liquid leaving the edge in

-_: the form of a thin sheet. This sheet of liquid later breaks up into

ill!! various sized droplets, thus. eesult£ng in the unwanted _tde size distribu-

=.!" rich. Assuming chat flow rate _an be increased proportional to the square

_" Of the rad£us, a disk diameter o5 50 inches would be necessary to meec-C :
.,_,.

i; the required flow rate of about 30 _pm. Since no syste_atic studies have

been made _or the actual performance of such a large scale spinning disk

ato_zer, various operating conditions and quality of the produced spray

=i. have to be evaluated. Another way to increase the capacity is to design
5)i
!-;._., a system of stacked spinners hav£_g a relatively large diameter. As pre-

_. viouSly discussed, one problem which seems co occur most often with

_:" spinning disks is the production o_ unwanted satellite droplets. Alch_ugh

arrangement of a Secondary .flow can eliminate these droplets co a certain _

-_:. extent, iC might be difficult co design such a secondary flow-chat could

_: operate properly under the variable wind conditions caused by the aircraft

_ speed.

i:

;:i_' Vaporization-Condensation Technique

i" If well controlled on a small scale, the vaporlzatlan-condensacion

technique provides a moderately monodisperse spray whose geo_ecric standard
o '

_:_ deviation.ranges from about 1.2 co 1.8 (Le_, 1978). However, it is

4. expected chac the drop size discribu£ion of the sprays produced by this

'!. type of Cechntqu_ would strongly depend upon the chemical composition of

=_'_o_ the liquid.- Therefore, the above estimations might be different from

:_'_ liquid to liqgld. -

::_: Theoretically, the mean size of the droplet produced by the con-

densacion method is prtmerily deter_ined by the condensation race which,

_n Cur_, is controlled by the vapor velocity and the liquid-_ir ratio.

When the vapo_ Jet emerges into ambient air, a large amoOnt of air is drawn

into the Jet. At the sa_e time, turbulence causes the vapor to be _txed

.. rapidly with the air. Thus, the mixing zone of the vapor and air is formed

e
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where the vapor condenses on nucle_whi_h proceed to grow inco drop_ecs.

As the discance from the nozzle increasea° che droplecs encounter more

air and the vapor pressure decreases until che $rowch rate of the droplecs

iS n_slisible. Theoretical prediction of the drop size has already been

siren by Equacion (1). Since che sprays produced by this cechnique are

based on condenaacion of_material on nuclei, the size-ccLChe drop is

r_ther dif_cul_ co concrol. In general, the number o_ nuclei, vapor t_m- m

peraCure and pressure, and-flow races of vapor and admixed a_r musc be

carefully controlled. In addition, che resulting spray drop sizes sen-

erally _re less chan__t__m. For these reasons, nO furcher consideracion

will be given-Co this-technique.
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COMPARISON07 VARIOUS2XIST G TEC IqUES

Based on the information and discussions from the three previous

sections, the techniques which could be further developed into the un£c

for agricultural-aviation application are now Co'be raced. Table 6 sum-

marizes the advantages and li_Ltacions of the techniques with respect co

their ability to produce a monod£sper_e spray, to cover the required range

of drop size, to accommodate various liquid properties, and to achieve

sufficient flow races. In order to compare these techniques more compre-

hensively, the requirements for the spraying nozzle that is to be developed

! are llsced in Table 7. Since not_all the requirements are of equal impoT-

tance, welghCins factors or priority levels have been assigned to each

requirement with the maximum value of 3 points being given co the most im-

portant requirement. It should be noted that the impor.tancelevels shown

in the table are those which are assigned for the purpgse of the current

_, dev_lop_ent program and drop size dlstrlbuCion parameters such as mono-

-- dlspersity, average drop size and flow rate age the factors which have

been chose_ for comparing atomization techniques. Some of the require-

ments dlscus_ed previously have been omitted since they are not considered

,_i, important for the--present evaluation purpose.

Table 7 is now applied to the candidate techniques. FoT this

purpose, Table 8 ha_ been prepared using the current state of the art of

each technique using A, B, and C. Thus, A indicates the technique

already capable of achieving the nequirement, while C i_dlcaces that the

Item should be furthe_ extended for the final version of nozzles. Then,

., each of the levels ha_ been multiplied by the _eighting point. This

product is shown in parentheses. For this purpose, A has been given 3

" polnCS, B 2 points, and C 1 point. Finally, these points have been summed

for each technique.

Depending upon the priority levels of each requirement, the

results shown in Table 8 can be altered somewhat. However, it is inter-

esting to note that periodic dlsperslofl of llquld Jet and spinning disk

have shown about the same probability to be extended to the prototype

design with ultrasonlc atomlzaClon technique following closely. Electro-

static atomization and vaporlzdtlon-condensatlon technique are, however,

,, found not to be adequate for further consideration.
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TABLE7. LISTOFUQUIR_NTS FORSPRAYINGNOZZLES
A_DTHEIRPRIORITYLEVEL

i|

Requir_ments Weighcin_ Point*

Capability of achieving a good
monodispersity of sprayed drops 3

Ability to produce the required
range of average drop size 2

Probability Of extending the liquid

application rate 2

Ability to accommodate the current
ran__of liquid properties 2.

* Key: 3 -- high importance
2 -- medium importance

1 -- low importance

Weighting point may or may not coincide wlth the

intrinsic requirements for spraylnE nozzles.

L

TABLE 8. EVALUATIONOF VARIOUS SPRAYING TECHNIQUES

Periodic Spinntns
Requir___ent Vibratioh ElectrOstatic Ultrasonic Disk Vaporiution-

(Weishtins Points) of Liquid Acomlzatioo Atomization Method Condensation

Monodispersity (3) &*(9) 8 (6) S (6) B (6) B (6)

Ranse of Drop Size (2) A (6) B (4) B (&) A (6) C (2)

Application P_tte (2) C (2) C (2) 9 (4) S (4) A (6)

i_snse of Liquid
Propertied (2) A (6) C (2) A (6) A (6) C (2)

TOTALS 23 14 20 22 16

* Keys k-- 3 points; B--2 points; C-- 1 point.
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..,:., _ CANDZDATE TECHNZ_E$

, As a £t_st step to generating a new means for producing a mono-

2 disperse spray, various possible approaches were _tudied. As reported in

j: previous sections, there are many spraying principles and techniques which

_ have been used in areas of pa__nt spraying, mass spectroscopy, combustion
,.,.

_. app.ltcation and basic spray and aerosol research. The most pram/sing
t

f_. techniques were ide£_fied to be those based on periodic vibration of

=_' liquid Jet, spinning disk or top, ultrasonic atomization and electrostatic

+_" atomization. These techniques were _f_und to be very e£fectiv_mnd_appeared
S
"_, promising for refinement, modiffication and development into forms suitable

;_ for agricultural aviation purposes in terms of the range of average drop

_" size, monodisperslty and ability to operate over a range of liquid pro-_;,r

_} perti_S. However, since major e_phasis of the Second phase of the present

_. program was to be given to untried concepts rather than refinement of the

.+_r above existing principles, it was decided that these techniques were not

to be pursued any further under this study, Therefore, some additional

:++ techniques or principles that had not been investigated in laboratory
_

_:o_+_ studies were first generated._.Among the generated ideas which emerged as

_,. a result of this pursuit, pertinent ones are briefly discussed below._

:_ As will be stated later, three of the following ideas were further analyzed

_. ffor _onceptual designs:
.... ?:,

I (i) Centrifuge type chamber Polydisperse spray p_o-_, •
°,. duced by a conventional atomizer can be passed
,:_ through a centrifuge type chamber such that large

=_: drops leave the chamber exit from the outer part
-_ while small drops leave frOa the center. If only

_: those drops from an intermediate annular section
+:, are allowed to leave the exit and the remaining
_" excessively large and small drops ate recirculated,
P' a spray of uniform drops would result.
!

_2) Atomization by two opposing alr-llquld Jets. By
_i operating two twin fluid nozzles placed in opposl-
_:" tion, liquid drops are allowed to experience a
}_: sudden accelerated or decelerated flow as they pass
: through shock waves set up in a tuned interspace.

-++ .......... - ....... ,i; /+ ..................................................................................................................................................................................+
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• Since acceleration of the droplets depends on chel_
sized large drops vould So chroush more sta_eu of

breakup than small d_oplets. Based on this prin-
ciple, the droplets leavins radially from the two
opposed nozzles become relatively uniform i_ size.

(3) Spinntns disk coupled with an ultrasonic field.

In order to overcome the intrinsic problem of low
capacity associated with a spinning disk, cup, cone
or similar shape, it was proposed that a spinning
disk be operated ac a high flow race and then an
ultrasonic field be imposed on the fluid sheet to
convert the fluid sheet into droplets of uuiforttl

(4) Rocket nozzle chamber. A rocket shaped combustion
chamber has natural spinning acoustic modes. Al-
though +quiva_enC modes can be generated iu small
chambers o_ a similar shape, the frequency in that

case would become very high. One alternative Way
is Co make use of the flow itself to chop liquid
Jets as they emerge into the chamber. A modified
fluidic device could be employed in place of a_
combustion process co drive such a system.

(5) Frozen particles. Another somewhat unusual but

interesting idea that came up during the study is
the possibillty of converting the llquldmaterlal
into the solid form whlch is more convenlenc for

producing nnifo_npartlcles. By initially freezing
the llquldmacerlal of interest Into the form of

fine solid parClcles and then separating those

solid particles into an arrow size range using an
appropriate method, a Spray of uniform sized frozen

partlclesmay be obtained.

Other ideas included a rotatlnE brush, rotating wheels, atomization using

a vortex flow and periodic vibration using sawtooth wave.

As revealed in the first phase of fiheprogram, one of the most

important requirements for asrlcultural spray nozzles is the ability to

produce a monodlsperse spray. Preferably the produced spray would be such

that only 5 percent by weight of the drops are larger than a maximu_ size

and only 5 percent small_r than a minimum size, where the maximum and

" mifllm_m are defined respectively as 1.2 and 0.80 times the average diameter.

Secondly, the nozzle Should produce sprays over the size range currently
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_ employed for aerial applications. This range was found to be be_aeen 25

and 500 Um. AlSo, the nozzle should perform sati_factorily over the range

_i of liquid propertie_ currently used in agricultural applications. Ranges

uf the liquid properties are: density, from 0.8 to 1.25 g/cm3; viscosity,

_* from 0.3 to 500 cent£poise; and turface tension, from 20 to 80 dyne/cm.

_' Finally, the designed nozzle shouldbe capable of covering the range of

liquid flow rates, 5 to 50 _pm (80 to 800 gph) as discussed in a previous

i section.

The priority level for each of these requirements was already

}i' discussed.

_' Con$idering the above performance requirements, the first three_______

_!i' of the generated ideas were pursued further. Conceptual designs using
(/

.... each of these prln_£ples are described subsequently.
j,!

[ ,,

_,, Centrifuge Type Chamber,,,,,,. •

i_.
_' In the presence of centrifugal forcO, drops of different sizes

_ move to the radial direction according to their size. Due to the dependence

_' of the centrifugal force on the drop mass, large drops tend to move rapidly

_, in the radial direction compared to small drops. Thus, if a polydlsperSe

i-_, spray is Subject to a flow having a swirling motion, it is possible to

_" distribute the drops in different radial positlons as a function of its

ii, slze. I_hile numerous devices guch as centrifuges and cyclones have been

i developed using a similar principle for removing particulates or measuring
_'r the size distribution of a__spray,this technique has not been used for

r', producing a monodisperSe spray.

_i'*'" If the excessively large and small drops among the drops dis-

_ trlbut_d at a cross section can be removed, a spray of uniformly sized

_*" drops can be obtained. This section describes a conceptual design for

::_ such a nozzle.

//

i /.,

?
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Background

An initially polydisperee spray consisting of large and fine

drops is introduced into a section near the axis in a Cube in which a

swirling flow is created by a rotor, as illustrated in Figure 19. Swirls

can also be created by introducing the clean air radially. Thus, large

drops are forced co the periphery of the cube while fine drops which are

relatively little affected by the centrifugal force remain more or less in

the center. By allowing the drops from an intermediate annular section to

leave the exic and the renminins excessively large and small drops co be

:_ re_irculated, a spray of uniform drops would result.

_. SWirling flows are a very complex phenomenon and it is rather

': difficult to perform an exact calculatlon of drop trajectories in such a

flow. However, if some si_npllfyingassumptions are made, as in the case

of cyclones (Fuchs, 1964), iC is possible to derive an analytlc expression

which can serve as a basis for the conceptual design for producing a mono-
r

_. disperse spray.

The motion of a drop in a Swirling flow is subject to the

following centrifugal force:

_ii_ £-m v2 _- v2
_' r =60d3- r (21)
_, where

': f - Centrifugal force in the radlal direction

m - mass of the drop

v = tangentlal velocity of the swirllng flow

r = radial .positionof the drop

,, 0 " drop density

:: d - drop diameter.

_'_, The spray drop under this force then tends co move radially at such a

velocity chat the resistance due to the drag force becomes equal co this

centrifugal force. According Co the Stokes law, the resistance of a drop
; is expressed as follows:

.i: f " 3_du r (22)
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w_ere

W _ ga_ visco_ity

ur - radial velocity of _ha drop (- dr/d_)

tet_.

For a tangential velocity distzibution of a swirling flow in a tube, the

following simple axpression, given previously by Shepherd and Lapple (1939)

is used hera z

v = kuo ¢E7_ (23)
where

k = proportionality constant

uo incoming flow velocity

R = tube radius.

Balaucing the forces given by Equations (21) and (22), after substituting

Equation (23) into Equation (21) we have the following differential equation:

dt = 18Fr 2 dr .
k2d2 2pu o R

i.

Subsequently, we integrate the above equation with an Inlclal condition of
!,

__ r-0 at t=0 and obtain

_--'! r3
" t = 6 F , (24)22 2 '

_.._ k d PUoR

If the drop is swirled S times within the air flow (schematically shown in

Figure 20) during the period of time, the t_tal travel distance can be

approximately assumed to be wrS. It should be noticed that half of r was

used to calculate the distance. The average tangentlal velocity of the

drop is estimated to be v(r/2) in a similar f_shion. Therefore we have

_rS _rS/_

t - v(_--WW= ,_kUo,_" (2s),|

ii where S is the number of swirls.

El_ninating t from Equations (24) and (25) we have an expte_sipn

• for drop size:

i

Ti"
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r
k

Equation 126) represents the drop size in terms of the radial position,

gas properties, man of the drop a_d operating velocity. There are

several Interesting points co be noted In Equation (26) as follows. Drop

size_ are found to be distributed nearly proportional co the radial posi-

tion (i.e., d_,rO.7$). Further, the deri_ed correlation equation does

ll[ predict the depenee_cy of the average drop size upon the device dimension --

R aad the flma characteristics Such as air velocity Uo and the number of

swirls inSide the cube, $.

It should be pointed out that instead of. us£ng the number of

swirls, S, Included In Equation 125), one can also utilize the chamber
'r

i. length, L. In chat case, the flow residence rime in the chamber becomes

LIe, where w is the axial floe velocity. In general, the axial velocity

In a _irling flma decreases with an increasing radial position. ThuS,

_ the calculation results for this residence time would also yield an expres-

sion similar Co Equation (2.5) In thac the time spent by a drop Increases

with the Increasing radial distance it travels. Thus, the chamber length,

iI which i9 considered to be a more explicit design parameter, can replace

the number of m_irls If an analytic expression for the axial flow In a

swirl flow is known.

Conceptual Design

Before incorporating the derived Equation (26) into a conceptual

i desIsn, several assumptions that have been employed in the foregoing
analysis should be noted. In order to sacisfy an assumpclon of a point

liquid Source at the inlet aS implicitly _mployed in the analysis. It is

desirable to introduce a liquid Jet through a small nozzle near the axis.
i

Ic is anticipated chaca very uniform and Idealized swirling flow pattern

f_ In a real device may also be difficult to achieve. OCher condideractons
Co be given in the design include chac the flow upstream of the S_irler be

p_ kept close co a laminar flow _o avoid any turbulence effects which would
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' • interfere wJ.th the CraJeccory of drops. As _d.ll be discussed lace_, dis-

_'. permity of the drop size distribution of the Spray will d6pend upon che

chot_:e of the annular section area from which the spray t_ ejected. For

example, i_ a very narrow annular section i_ chosen, otse _ould obtain a

good monodisperse spray, _tile a spray chosen from a relatively large

annular section would include a rather widely dispersed spray.

Based on the present principle, a prelt_aary calculation was

made using the follosrLns data co examine the drop size of the spray pro-

__ duced by the technique:

• ;. S - 3 0 i g/cm3 (water)

-. Uo " i0 c_sec _ - 1.84 x 10-4 dyne-sec/cm 2"(air).k-0.5

The calculated drop size distribution as a function of radial

__ position at the outlet is shown in Figure 21. IC iS seen chat the average

drop size ranges from 0 Co 220 _m in dimnecer. Since the range of average

drop Size Chac is currently used in agricultural aviation application is

about 25 co $00 ,m, ic is necessary co extend further the above size.

For this purpose, we can _rrice an equation predicting the maxi-

mum parCicZe slge by setting r = R in Equation (26):
5

d ,, 1.643 (27)
=" max OUo

_ where dmax i8 the maximum drop size. Noting chat _ and 0 in Equacio_ (27)

are the properties of air and liquid, respectively, one can increase che

cube Size it, decrease the velocity uo, or decrease the numker_of swirls S

!_. tn order co extend the maximum drop size. Using the data of S-3, o = 1 g/cc,

_ arid _ s 1.84 x 10 °4 d.vue-sec/cm 2, che dependency of the largest drop size

upoh flow velocity and cube dimension is shown in Figure 22.

Although Equation (27) can be used for a design criteria for

" extending the drop size range, the equation iS noc alone satisfaccory if

an excended flow race is co be considered simultaneously. Therefore, a

certain opti_tzation becomes necessary. Effects of tube dimension and flow

velocity on the flow race, Q, are readily avail4ble from the following

-=' equation:
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i q ,' • (26)

Equation (28) suggests that in extending the drop size, an increase in the

tube dimensiou is more beneficial than a reduction in flow velocity.

However, such an ificrease may have to be restricted such that the resulting

Reynolds number be kept small where possible.

Despite the above discussions on optimization, the tube size ig

further restricted since an excessively large tube cannot be mounted in

an airplane. A tube radius of 30 cm is considered to be the largest dimen-

sion that can_be realistically designed. If.such a _estricted increase

in.dimension does not extend the drop size sufficiently to meet the requira-

men£, the large drop size has to be obtained by operatlnK the device at a

reduced veloclty. EfLects of--reduced velncltles and Increasad-x_menslon-

on the max_num drop diameter are shown in Figure 13.

In the present desiEn, applicatlon rate of liquid material depends

more_or lass upon the air flow rate which is determined by operating velocity

and tube radius. Since a conv6ntlonal twin fluid or llquld Jet atomizer is

to be uBed as a polydiSperse spray source and located in a position near the

center, the application problem also becomes a choice of a suitable atomi-

zer. Another consldera£1on to be given associated with the liquid applica-

tion rate is that only a portion of the liquid dlssemiflated from the

atomizer is sprayed and_ the rest of the-llquid drops which are not desiEa-

ble in si_e are recLrcula_ed. Further detailed discussion will be made

L_er.

Dis_ersion o_ drop size distribution og the spray produced by

the current design can be controlled by adJustin_ the area o_ the selected

annular cross sectio-.. The required drop si_e dispersion is such that

90 percent of the drops be within the ranBe o_ 80 percent to 120 percent

of the mean drop size. Since the dro;D size is distributed with a rela-

tion proportional to r 3/& as shown in Equation (26), the outer and inner

radii of the annular section should be (0.8) 4/3 and (1.2) _/3 times the mean

radius rm or 0.74 r m and 1.28 rm, respectively. This is illustrated in

Figures 21 and 23. However, if the incoming spray is nearly monodisperse,

the above criterion would become less restrictive.
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The only ltq_td property whlCh a_feccs size of the drops pro-

duced by the present destSn is the liquid density, as shown in Equation (26).

As d_scuSsed previously, it was known chat density o_ the commonly used _ • I •

liquid material in aSricultural aviation application causes from 0.8 to

1.25 S/cc. boring chat the drop size iS inversely proportional to the

square of the liquid density, the rather narrow density ranse of the liquid

material that is currently used does noC impose a sisnigicanc problem.

Assessment of the Desi|n

In this section, the p_oppsed desisn is assessed in terms of its

ability co cover the tense of the averase drop size, dispersion of chadrop

size distribution, app!icacion race and operactns tense of liquid properties.

Average Drop Size Ranse. As discussed p_eviously, the present

desisn concept covers a wide tense of averase droop size depending upon

suitable operatin8 conditions and device dimensionS. The parCicular design

with 20 cm radius cube would produce an averase drop diameter ransine from

0 Co 300 _m, as demonstrated in Fisure 23. _or larser dr_p sizeS, a 30 cm

device, if operaCins aC an air velocity of about 4 cm/sec, can achieve an

average drop si_e up Co 50C _m.

DisperSion of che Drop Size DiStribution. As evident in the pra-

cedtns analysis got the design, the dispersion of the drop size distribution

can be controlled by adJusCinB the annular section froawhich a liquid

spray is Co be extracted. Since drop sizes are distributed alon$ the radial

direction proportionally to r3/4, the monodispersity _equiremenc can be

Sattsgied by alloying the drops co leave an annular section whose outer and

inner radii are 0.74 rm and 1.28 rm, respectively, where rm is the radial

position f_om which drops having averase diameter, dm, leave. It should be

further noted chat dispersion of drop sizes would not vary with chanseS in flow

velocity or in liquid properties. According to the principle used in the

design, the above aeeeesmeflt is theoretically correct. It is, however,

expected that there would be some drop si_e rcsolution problem primarily
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-:i/ due to ex_ect+d non-ideal characteristics of a slrirling floe. Only fabrI-
+.
,_,,: cation and testing of the device can resolve the question regarding the

_: real dispersion of the drop size distribution.
++"'_b

_ Application Rate. Although it is not known exactly how the

.. device would perform, qualitative assessment of the application rate can __

_, be made aS follows using engineering Judpent. The liquid application rate
_:
:: Of the present devi_e depends primarily On the actual performance and opera-

'-!i; rich, such as the application rate of the primary nozzle to be used and the
_: operating air veiocity. Further, the application race ts further affected

_. by the cross sectional area of the annular section at the outlet. In
_": general, it.seemS Co be advantaSeous to use a liquid pressure type atomizer

'- as a primary spray SOurce due to its large capacity co.-,_ared to C_n fluid

_: ato_Lzers. Also, it i_ important to telect an atomizer or operate the atomi-

C:; zer.:Ln _uch a way Co produce a spray whose mean size closely matches the

_!_: desired drop diameter. In other words, iff a spray of r_lative_y fi_e drops '

ili, is desired to be produced using the present design, • primary ato_Lzer
5, prodoclng a spray containing drops of such Size Is to be selected to

ii increase the application rat_.

_._ Liquid _operties. Due to the principle of classifying liquid

-_[ drops Co different size categories using a centrifugal force, operation of.
' the present design is not affected by any liquid properties (such as liquid

_: viscosity, density and surface tension). Although operation i_ not affected

!_i: by an_ liquid properties, the average drop size is affected by the liquid

_" density, as shown in Equation (26). However, this is an operational con-

::-_", 'ditionrather than capability of the current device.

.il

-',.,.. Suggested Development Work

; Sihce the design of the centrifuge-type chamber t_ conceptual in ne-

_ Cure, and since ho supporting experimental data or performance information are

2_i available on the actual performance, it is onl.y possible to discuss q_alt-
;i

tatively the feasibility of extending this principle into a real means for

._<,.' producing a monodispetse spray,
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Although the principle a_d the theoretical analysis have been

established, one of the un_ettaintiee associated with the present concept

. is an establishment or study of a uniform swirling flow as needed. A selec-

tion of a st_ttable rotates vane or the desiSn of radially introduced air flow

create • most desirable swirling flo_ needs to be studied. In conJunctioa

with' this, the simple formula shown in Equation (23) that was used in pre-

dicting a tangential velocity distribution as a function of the radial

position must also be verified experimen_ally. The number of swirls that

has been assumed for the purpose of theoretical development in this study

is expected to vary depending upon the tube length add the type of rotating

element to be used. Again this number of swirls should be studied in con-

nection with flow patterns.

Although average drop size, range, dispersion of drop size dis-

tribution of the spray and effects of liquid properties were analytically

well established, one uncertainty in actual performance of the present

device i_ the liquid £1ow rate that can be covered. As already assessed,

a selection of suitable atomizer and detailed geo_etrlc and fluid dynamic

match e._perlmentally between the atomizer and the current design remain aS

an area of further development.

Two Opposed Liquid-Laden Air Jets

_hen t_o air-liquid Jets facing each other are operated, it is

expected that there occurs an air flow staKnation region near the center

and that flows are eventually directed radially. In addition, some insta-

bilities can be expected in the flow. If the Jets emerge from fading sur-

faces, one can expect Standing waves to be set up such that wave frequencies

are coupled with flow instabilities. As a result, liquid drops would

experience sudden decelerated and a_celerated flow while passing through

air waves. Due to the difference in their inertia, large drops unde:_Ko

more breakup stages than small drops. AS a result, the drop size distr_-

bution of the spray will be made more narrow.

This concept can be considered an extension of the Hartmann

whistle (1927,1939) or o_ another atomizer called the "Sonicore" nozzle.

O0000001-TSFIO



P2

In the Harcmann CTPe atomizer, a Jet of air ie impacted on _.. axially posi-

tioned cup. With the cup _chin the proper _anse o_ distances from the

nozzle, an incense first mode _requ_ncy is produced when the flow is sonic

at the Jet orifice. In the Sonicore nozzle (_nteruational Flame Research

Eoundatiofl, 1978), the Jet orifice is replaced w_th a conSergent-divergent

nozzle, and the liquid is injected in the direction normal to the flow

through several orifices at the nozzle throat. In the present concept, two

such nozzles are directed toward each other without a cup. It is expected that

with the proper spacing of the Jets and contour around each Jet, a sonic gen-

erator will also result which is capable of breakinB up tha-liquid spray.

Sacksr0uud

The lack o£ detailed a_alysis of this complex combination of a

sonic generation and a liquid breakup_has hindered both the use and

improvement of the design. Studies over two decades ago found no sig-

nificaflt change in spray size distribution whefl the sonic cup was filledv

in. That is, there was an indication that the sonic aspect of the nozzle

might have no effect on the spray. HoWever, in the absence of the specific

_," report ia which this widely reported study was made, it is not known to

what air pressure level the data were taken.

Khandwawala, et al. (1974) reported results on mean drop size

using the Hartmann acoustic generator to atom/ze three lisht oils, for

pressures from 2 to 5 atomoepheres and frequency from 5 to 22 k_z. There

are some questions about their final correlation since the differences in

_ density, viscosity, and surface tension were ignored. The Jet exit diame-

ter (equal to the cup diameter) was varied from 4 to 6 mm and included in

the correlation, and the fuel burette was held constant in size. Neverthe-

less, the d_pth of the cup was varied in order to vary the frequency, and

a wide range of pressures was used. The_e data showed that the Sauter mean

diameter decreased with increasing frequency to about the 1/4 power, and

de_reased with increasing absolute pressure to the 4/3 power. The range of

mean drop sizes obtained was 12 to 60 microns.
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i Recent tests of a $onicore nozzle as reported by the IncerngCional
il Flame a_search Foundation (1978) using fuel otl at 9 to 19 centistokes showed

t ' the no,nelly expected type o_ drop size distr£but£on Ear gage pressures

_, of 0.28, 0.35, end 0.71 bar, with mean drop size decreasing with £ncreosin$

Ii air pressure. However, at the Sage pressure 1.41 bar the size distribution

' narrowed drastically, as £1iustrated in Figure 24. It is seen in the

_" figure chat the size distribution obtained at a pressure of 1.41 bar is

i sufficiently narrow to satisfy the requirements for an atomizer to be

i):_'' developed in this study. There appears to be a critical pressure at about

I. 1 bar beyond which the drop size distribution suddenly becomes monodisperse,

_Ii although this could not be positively ascertained.' In another recent study, _ot yet a_ailable in the open literature,
_: the noise of Sonlcore nozzles Nos. 035H and 052H were determined using wateri'

il as the liquid. Up to 1.5 kilopascals, the noise output varied in a manner

!. slm41ar to that of usual Jet noise (power _ pressure3). However, when the
,_. pressure_as further increased, there was a sudden break in the pressure-

! power data beyond which the noise power increased llnearlywlth pressure•

Measurements of linear mean diameter and Saucer mean diameter showed a sl8-

i: nlflcant decrease in the ratios for the two nozzles in going to the higher
_L

_" pressure region. The absolute values are not considered to be significant

_! since there could be a consistent error in either underslzlng the linear

_' mean diameter or oversizing the SauCer mean diameter

_ There _ppear to be two types of mechanisms Chat can enter into

the spray production. For droplet distribution from the cross current

_ breakup of a liquid Jet of diameter d, in an airstream of velocity V, the
f

following correlation _quatlon fo_ the volume median droplet diameter d30,

_ given by Ingebo and Foster (1957), is applicable for capillary wave breakup:
_ -i/4
,._' d30/d j - 3.9(We.Re) , (29)
_, where

_' V2
i,__ We - the Weber number - Ogdj /o

Re - the Reynolds number - djV/v!.

a - surface tension

pg - gas density

V - kinematic viscosity of liquid•

i:
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Ltqutd flow ,, 1.8 kg/h
60 -- Viscosity • 14.2 ¢St

0 m

40--
1.41 bar

30 --

2O

I0 _0
I00 I000

Drol_Olometer,/zm

FIGURE 24. DROP SIZE DISTRIBUTION OF _PRA¥ PRODUCED BY SONICORE NOZZLE
(International Flame Research Foundation, 1978)
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• A ,ub_equon_ _udy _howed _h_ the _bove correl,_ion w_ _ill v_lld _wn in an

o_eillatory Ba_ flow at frequ_ncle_ of abou_ 100 _nd I_00 Uz provldlng the

average value of th_ ab_olut_ relatlw velocity o_ gas and drop was u_ed

(Ingebo. 1966).

If a drop sur£ace is exposed to an ultrasonic field, waves a_e

set up in _he surface. At sufflclently intense amplltudes, the waves will

peak and tear off. Tans (1962) s_udi_d high frequency (9 to 80 kHz) atomi-

zation of both ell (27 mN/m, 850 kg/m3) and water from deep pools and thin

sheets on vlbra_in8 plates. From Kelvin's equation he notes that the wave-

length, _. of capillary waves is glven by

A3 , 2_a/pf 2 , (30)

where o is the surface tension, O is the liquid density, and f is the fre-

quency of the waves. In terms of the sound generating frequency, F, we

have

13 . 8_o/oF 2 . (31)

Measurements agreed with these equations. The particle term from the wave

tips correlated wi_h

dl0 . 0.34(8_o/pF2) I/3 (32)

where dl0 is the number median drop size. Analyzing Lang's one set of size

data at 130 kHz for the mass median (50 percent mass) diameter, the constant

appearing in Equation (32) is to be 0.43 rather than 0.34. Data were pre-

sented for 13, 130, 390 and 780 kHz.

When a drop is injected into a high veloclty stream (which may

be a shock wave or an acoustic wave), the drop is shattered. Studies have

• shown that this breakup comes from the distortion of the droplet by the

drag forces, and this takes some time. Simpkins and Bales (1972) reviewed

the work in this area. They pointed out that the droplets may break up

by forming a bag-like shape at lower critical values of the Weber number

or by viscous shear effects at higher values. However, a critical time is

involved for the distortion to take place before the breakup starts. These

authors use the Bond number [Be - par2/_, where a is the acceleration and
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r is the drop radius] to analyze their shock tube data. Obviously, So is

related to We through Ne_tonfs law and the drag coefficient of the drop.

They estimate the timeforonset of unstable surface waves as given by

1/2 u
( 0 ) _ t = 22(_ar2/o) "1/4""

22(pU2r/1.25a) "1/4 (33)

or

; t - l_16(2r/U2) 3/4 for water ,

where r and U are in-_ and m/s, respectively. For _reakup, about three times

this time is estimate_.--On_oztunately, the drop size distribution of-the

breakup products is not reported in the literature.

The abov_ phenomenon is related to the breakup of drops ia a

sound wave. A large draplet :'_uld flatten normal to the oscillation as the

v_locity oscillated in direction abou_ the droplet. The flattened droplet

woula have waves built up in it that would result in a breakup i_ a controlled

size range.

To summarize, there is no complete treatment og the Hartmann

atomizing phenomenon. The Sonicore-type nozzle produces a broad, normal

type of spray distribur._on at low pressure ancLa..uarrow spray distribution

at higher pressures. It is considered that the change £rom one type to the

other is related to a change in the noise output, which shifts £rom a Jet

no@se to a monopole source-type noise. The ineffectiveness of the cup

resonator may be a Eesul_ of the rather low pressures _mployed in those

experiments.

Therefore, if a critical oscillating shock wave system is built

up and large dcops are fed into it, these drops would be disintegrated into

smaller droplets which would move out of the atomlzlng region with the

general flow. The change in sharpness of the spray size distribution and

the apparent coincidence with change in noise output characteristic suggests

that the passage of the droplets through a small number of, or a sln81e,

shock front would not give the required narrow size dlstrlbutlon.

! There is no doubt that a concentrated effort to understand the

droplet breakup in this type of spray nozzle would result in a more useful

and flexible design. For instance, one might control mean drop size by

; controllin_ the depth of the cavity.

_" ":...... " '" - ' _ I .... _:_:_I _ ' ,_;_: _ ,...:..L ,.JW,_j__. -- ........ " .... ".... " .......... - .... :" •
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• ConCeptual Design

:. • Figure 25 shove a conceptual design developed based on Che pre-

i cedin$ d£scussions. This desisn can be used as a laboratory device for

i,' CesC purposes. TWo £dencical, opposed nozzles a_e mounted so as co be
adjustable in discance. T.lith thi-_ arransemenc, a sonic field will be set

up between the facing plates surrounding the Jets, and the frequency will

be controlled by the spacing between the plates.

_isure 26 shows an enlarged view of the core of a Jet system.

EtSht dttcts feed liquid into the hilh pressure jet co eliminate any pattern

of liquid _low. For the dimensions siren, it is expected that the capacity

would be of the order of 100 ks/hr, with mean droplet sizes adjustable

from 20 to 80 microns.

r

!_il F_GURE 25. LABORATORY MODEL OF TWO OPPOSED

LIQUID-LADEN AIR NOZZLES

'_.

-=ii '!,'
L
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FIGURE 26. DESIGN DETAILS OF TWOOPPOSEDLIQUID-LADEN AIR NOZZLES
(Unit: tin)

Assessment of the Design

The assessment of the design concept is based on logical extra-

polation of an array of _perimencal data as already discussed rather than

o_ any basic theory o_ operation. On this basis, it appears that the range

of mean diameter might be from 10 to 100 ur, with a possible 4:1 change in

diameter for a single nozzle, The dispersion should be approximately
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cofuJtant, with 5 per©en_ above and 5 percent below _he 80 percen_ to 120

percent of meen drop-s/le range. The available data ind/cate that kinetic

viscosity from 0.25 m2/sec to 20 mm2/sec can be handled. This covers

from water to heavy, o11. The design capacity of the proposed design is

100 kg/hr. SQaLler cspactttes should afford no problems. However, larger

capacities may be difficult to obtain, a_i multlpte nozzles would be needed.

Susgested Development, _ork

The next logical etep would be to build an experimenta! unit

similar to that shown in Figure 25. First, the concept would have to be

proved, and second, after proving the concept. _ork would.proceed to exa-

mlde the effect of the spray variables (air pressure, air flow rate. gap

width) and fluld variables (viscosity, density, surface tension). Third,

the effect._f size changes in the new spray nozzle design would be

examined. Fourth, one could concenr, ra_e on optimization by changes in

fuel Jet size. number and location, throat contour, and s£=ilar details.--

_ _g DiSk Coupled with Eltrasonic Field

Zt is well known that a very uniformly sized spray can be pro-

duced by a spinning disk, cup. cone or similar shape (Putnam, 1957, and

Dunskll, 1965). However, as alneady discussed, one problem with this tech-

nique associated with the agricultural aviation applications is its limite_

: application rate while maintaining good atomization characteristics. As

the llmi_ed flow rate is increased, there is a range in which ligaments

.= are produced from the disk rather than droplets. Thege ligaments then

break up into more or less random lengths. At an even higher liquid rate,

a sheet o£ fluld is formed. This eventually breaks up into drops o5 many

different _Izes. However, if these llg_m_nts are subjected to an ultra-

sonic field or an electrostatic field they would break up into a spray of

drops having uniform sizes. The exact breakup size depends on the llgament

- -- ,--:. .... I 000U0001-TSG04
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Ii dia_cer, the velocity, and the ultrasonic f_equeney in relation to the

Itayleigh breakup og the 1Lsam_nts. This procedure could provide a method

of producLn$ a more compact and htsher flov race 1pray of unL_m-m size

than could be achieved with a bank of spidnInS disks each operating at the

typical low flow races.

.

;i__ Although this concept originates from the concept of a conven-

il' tionaI spinning disk. the two concepts are different In that _he present
: concept concerns the region of Liquid sheet formation and sheet breakup

into unlfo_m slze droplets by use of an ultrasonic field. Thls can be done

i, by tmposInS_one frequency directly, or by using one frequency to produce
Ligaments above the normal l_a=ent Loading and then using a second _re-

_! quency to break up the ligaments.
l2

!.il In conjunction w:Lch the present concept, i__ahould also be men-tioned that it Is possible to use the sheet generated by two impinging

_ Jets. Huang (1970) shoved that a a_xlmum radius of the sheet before!

_![i! breakup was reached at a Weber number of about 800, at a ratio of sheet--.diameter to impinging Jet diameter, d, of somewhat over 100. _ltrasonic_

'4 action could be used on the sheet to finely atomize the fluid. Despite

_" many possible schemes, as discussed, only the spinning disk method coupled
!!?:
_i)_ with one frequency will be considered in this study.

. Backsround

!!.

There iS considerable information on the performance of convert- _
!,

c tional spinnin8 disks and cups relative to the production of uniform sizes

i!_ of drops plus satellites aC low Loads and on che._productio_ of ligaments

i wlth subsequent breakup at somewhat hlghe_ loadlngs. However, there has

not been too _uch interest In the formation of sheets at the hlgh loads.

_ From Hinze and Hilbo_n (1950) a relation is obtained predicting the Glow

_" rate at which there is a cha_ge from ligament to sheet flow, namely!;

_:_ (Q20/d_ ,. 2 .3, ,0.6(u210Odc)l/6_,. o) _ Pac/a; = 1.77 (34)

',!", where dc is the cup diameter and _ is the rotational speed.

e',_
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For water, rich a $-cm cup rocactn$ ac w - !03/sec or 9500 rpm, supply

rates abOve about 6 8ph v111 8tve a sheet type flow. The averaTe radial

velocity Is derived In the form

Ur " (ow2Q 2 stne/6_2_dc )1/3 m (35)

where the angle _ is between the edge surface of the cup and the axis

(i.e., a disk gives 90 degrees). The manner in which waves are formed _y

the interaction of the high tangential velocity, low radial velocity, and

the interaction with the air is noc entirely clear. -Further treatment of

these phenomena is given by Fraser, et al. (1963) and reviewed by

Dombcmeski and Munday (1968).

In a related.problem, the disintegration of liquid sheets from

swirl chamber sl_ray nozzleS, both experimental and-theoretlcal work have

been r_ported. -York, ec al (1953) derived the growth rate equaclon for

various wavelengths in a Sheet _ovlng relative to the surroundings and pre-

sented cur_-es for alr/wacer systems over a range of Weber numbers.

Dombrowskl (1968) reviewed thls and other related work and found the wave-

length of maximum growth, _w_x, was given by

_max " k_°/_g U2 ' (36)

where 3 < k < 4 over the entire range of conditions.

Clark an_-Dombrowskl (1972) solved the same type of problem but

emphasized the breakup of the sheet. Their theoretical relatlou-generally

predicted values o_ distance co the breakup region significantly below the

observed valuee. This indlcaces chat more surface might be available for

controlled breakup than chat expected from any present theory.

Concerning the breakup of this Surface by an ultrasonic field,

the work of Lang (1962) was already reviewed lu a previous section. It is

Inceresclng co _ote, however, chat if one llmics the ultr_sonlc range Co

frequencies of 20 kHz or more and considers water (o- 73 x 10-3 kg/sec2),

the maximum val_e of the number median droplet size is 56 microns. If a

larger median dlameter is desired, either the frequency will have to be

reduced and muffled, or an alternative approach such as the use of elecCro-

static effects would have to be used.
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Conceptual Desisn

Fiaure 27 shows the conceptual des£an _or the ultrasonic atomi-

zation of a liquid film. Tha liquid _ilm. exposed co the ultrasonic field

!i on both stdu. is produced by a spinning overloaded considerably beyond
trip,

!/,. the usual ranze in which droplets or l£$amencS are produced but not suffi-
_ ciently co prevent a larae free sheet area from bein$ formed. The ulcra-

_i,_ sonic field is produced by a horn in the arransemanc sho_ in the fisure.
A rod rich a flexinK annular ring miaht also be considered. An intense

_ standing wave is set up between the horn surface and the reflecting plate.

Adjustment is necessary to optimize the system experimentally for the

__ drivins frequency and the appropriate location of the fluid film in t.,e

_' interspace. A small.-amOunt of air is to be supplied (natural aspiration

_ might be suffici_.nt) to prevent a pressure buildup that could produce an
r

_;- instability in the _luid film.
!

,_ It iS difficult to estimate the load capacity of this design

-_ primarily due co lack of e_iSCins experimental data on the variation ofL_

free liquid sheet size as a _unction of loadins, cup size and rpm. It is

felt that the above design should be good co 10 $pi_, and possibly a much ...........

i larger capacity.

__ Assessment of the Design

_/ In this design concept, the median drop size is determined by
i

:_. Lane's (19f_2) _elation. For rater, the drop size is 56 _m aC 20 kHz, and

decreases tKth increasing frequency; Lans shows data to l_ss than 4 um.
i l
,_; Ig an acoustic silencing means is adopted, then the low frequency end

i_ could be extended. The median drop diameter, which varies with g-2/3,

_ could be increased co larger sizes. The median drop diameter is affected

: less by surface tension and density, varying with (_/0) 1/3.

i iiiiiI It is rather difficult to predict a dispersion of drop size
distribution of the spray obteined without operating the optimized device.

i_ Lang's data indicate a dispersion larger than that desired. In one set of
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UltrOsOnicHorn

Liquid Sheet

A,! t tAir Reflecting Rate

Rototion

Li( uid

FIGURE 27. DESIGN CONCEPT OF ULTRASONIC ATOMIZATION OF

A LIQUID SHEET PRODUCED BY SPINNING-DISK METHOD
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data, for instance, only 80 percent of the spray wes _rithin a 2:1 diameter

range. However, 1_ is expected that this range of disperSiOn can be

reduced.

The lXqu£ds thac can be sprayed should cover properties typical

of water, 115hC oil, and heavy oils.---The amount Chac can be sprayed cannot

be deduced from the available data. It will certainly be greater, and

probably by a considerable amount, than the amount ac which a sheet starts

forming in preference co ligaments. With the particular design given above,

ch£s is 6 gph for water. If the extent of the liquid _heet before normal

breakup could be obtained from the literature, the mazimum load would then

!_ be equal Co the number of wave cells on the two surfaces times the drop

....: size and the frequency.

Suggested Development _'ork

Once the concept for the present approach has been established,

the next logical stQp is to fill in the gap in the literature concerning

the spray sheet produced by a spinning disk. A small number of spinning

disks would suffice. It is suggested chac they would be run mainly with

one fluid, with bhort tests on a few additional fluids tc determine the

effects of surface t_n_ion, viscosity, and density. The main tests should

_elate breakup sheet diameter to flow rate, disk size, and speed of rota-

tion. Mean drop size of the spray a_ter breakup would _lso be determined.

This would be related to the mean drop size expected when the ultrasonic

(or electrostatic) field was imposed.

Upon obtaining these data, the effect of ultrasonic fields of

} various strengths and frequencies on the median size and si2e distribution

should be experimQntally determined.
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• COMPARISONOF PROPOSEDTECHNIQUES

_, As already aSseSsed, the three proposed deexsns ace exploratory

_i!_ innatureprimarilyduetolackofsupportin, experimentsldataoroperatia.experience. Consequently, it would not be very meaninSful to attempt to

iii evaluate or directly compare these theoretica£ techniques. For this reason.
only the desree to which each ef the proposed desisns is expected to meet

:i_ the specified perfotlqance requirements is summarized in Table 9.

ii"
oFCAPASV..ITZESPRO  EDTEC IQUES

_s_bilitlvs for Proposed Techni,_ues
_i_ ,'V_ opposed Liquid-ludun Sptnnin_ Disk 2ith
_'?, Rvquireoente for Techniques Ccntrifuae Type Chamber Air Jets Uttrasoni_ Field

_' Sprays, neatly mm3dieperseta) Can produce a very. narrow 90 percent within 80 to 1ZO Setter than chat obtain-
_ii drop size distribution percent of mean diameter able bY _n exiettn8

N_'_ Averase Drop Size, I$ - 500 u_ o - 600 un tO- lO0 um for an expert- Up to _00 ,A; could bemental unit extemled

_i Application Rata. 5- 50 Ipm Dependsupon flay rate of Lo_ rate_ for an initial 10 sph for laboratory

(Single unit) primary atomizer uned; experf_entai unlit can be scale.! expected ¢o be _¢tsfeccory extended

Liquid Properttes_
_, Liquid properties have no Operates ,m most liquid Surface tension _d density
i,, De,airy, 0.8o 1._$ I/co effect on operation materials are important parameters

i Viacoeity. 0.3-_o cpSurface Tom*lama 20 - 80 dyne/am

!_- Future DeVelopment Area Flay pattern in the chain- Feasibility study and per- Experimental verification
bet needs to be studied; form_nce evahmtione needed needed; experimental
u_tch between aircraft ,m a laboratory scale, match between liquid sheet

_i speed and operettas air dine and frequency to be
_i_ floe desirable, deterttined.
f_

iI (a) Five percent by welKht of the drop6 can be terser then a maxfJmmsize and only $ percent shallot than aminimum sine where the eutxtunm and mtfliuam are 1.2 and 0.80 time the averase dAaumter, respectively.

o;' '

o

g':L
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CONCLUDING _S

As a result of the first phase of the present program, abouc fif-

teen different kechniques For producln$ sprays have bean identified, Amens

: the identified techniques, five techniques which were found to be capable

of producin$ a monodisper_e or nearly monodisperse spray have been closely

studied and compared with each other. The resul_ of this comparison is

that periodic di_persion of liqu!d Jet, spinfltn8 disk method, and ultra-

sonic atomization have been found to be most promising. While these tech-

niques can-provide a monodisperse spray over a reasonable range of average

drop size, all of them require some extensio, of their flow rate capabiiities

to match those required for the purpose of agricultu_al aviation applica-

tions.

Additiona£1y, three conceptual designs of atomizers for producing

a monodisperse spray have been generated. Where possible, a theoretical

equation which predicts the performance of each device has been obtained

employing certaifl simplifying assumptions. Due to the exploratory nature

of _he present program, no available experimental data or test experience

: associated wi_h these new concepts exist. Consequently, it is considered

difficult to evaluate these concepts definitively at _he present time.

For further development of the senerated conceptual techniques

into a practlcal unit, it is considered necessary to evaluate the sound-

ness of each approach by means of experlmen_al-tes_s. Since each of the

proposed de, lEns is based on a new conce_t, such expe_Iments should be

aimed at validatLon and further development of the basic prlnci_les rather

than at a direct application for use. TherefoEe, laboratory scale experl-

ments would be more meaningful than full scale experiments.

_ conJunction with the results of the first phase of the study,

the existing techniques that were identified aQ very promising should also

be given consideration. Of these identified te_hnlques, the principle of

periodic dispersion of a liquid Jet is recommended for _evelopment into an

atomizer for eve.Ltual agricultural aviation use.



i

87

_BLZOGS_P_

, "Low Volumu Oil _ptayin8 by _Lrcra_ for theAdam, A. V. (July 1962),
Conr.rol of Slllatoka Dlsease off Bananas", hpo_t of the 4Oh Alriculcural

ii Aviation hsea:ch Conference, pp 8-12.

i,: Akeseon, N. D. and Yates, W. E. (1974), The Use of Aircraft in ASriculcure ,
FAO of United Nations Development, Rome [FAO ASriculcural Series No. 2,
FAO Asr. Devel. Paper No. 94].

Amsden, R. C. (1972), 'qJind Velocity in Relation co Aerial Spray/ms of
Crops", Asr. Aviat., 1_4(4), pp 103-107.

_il: Andrus, P. G. and Walkup, L. E. (1963), "FeaSibility of a Spark-
_ Discharse AtomiZer for Small 011 Burners", Battelle Memorial

InSclcuCe Report to American Petroleum Institute.

Anconevich, J. (1959), "Ultrasonic Atomization of Liquids", IRE Trans PGUE
_r ' ( 7 ) ' pp 6-15.

Bals, E. J. (1970), "Rotary Atomisation", Asr. Aviac., 12(3), pp 85-89.

Berglund, R. N. and Liu, B.Y.H. (1973), "Generation of Monodisperse Aerosol
Standards", Environ. Scl. Te_hnol., 7, pp 147-153.

l. BiJsterbosch, B. H. (1978), "Preparation and Characterization of
_; Detergent-free Monodisperse Polystyrene LatiCes of Small Particle

I_ Size", Colloid• PolFm_r Sci., 256, pp 343-349.

: Binek, B. Fnd Dohnalovg, B. (1967), "A Generator for Manufacture of Mono-
• dispersed Aerosols fnom_the Liquid Phase " Scaub-Reinhalt. Lufc, 27(11),
,_ pp 31-33.

: Bisa, K., Dirnagl, K., and Esche, R. (1954), "Zerst_ubung yon Flussigke.iten
: miC Ulcraschall", Simens Ze/cschrifc, 28(8), pp 341-347.
>

_.: Boguslavskii, Y. Y. and _knadiosyants, O. K. (1969), "Physical
_: Mechanism of thQ AcoUstic Atomization of a Liquid", Soviet

Physics-Acoustics, 15 (I), pp 14-21.

Bogy, D. B. (1978), "Wave Propagation and Instability io a Circular Semi-
Infinite Liquid .Te_Harmonically Forced at the Nozzle", J. Appl. Mech.,
4.__5.5(3),pp 469-47_.

Bollini, R., Sample, B., Seigal, S. D., and Boarman, J. H. (1975),
"Production of Monodisperse Charged Metal Particles by Harmonic Elec-
trical Spraying", J. Colloid Interface Sci., 51(2), pp 272-277.

Brown, A.W.A. (July, 1976), "Some Uses of Aircraft in Public-Health
_* Entomology Outside the United States", Report of the 4th Agricultural

Aviation Research Conference, pp 20-26.

00000001-TSG12



88

Buotctker, R. and Basel, A. G• (1977). "P_oductlo_ o5 Uniform 6..pens$on
Droplets and Their Drytn$ to Honod_sp_rs_d Granules", Chimia, _i(8),
pp 301-306.

BurSoyae, W• £•, ColleCt, G. C., N_olson, L. T., and DavQnport, D. D•
(1973), "Application _ce and Droplet Size: ThoLt Effect on Pesticides
Dispensed by Air Ovo_ Heavy Vegetation Cover", ksr• hviaC., 1_5(3),
pp 70-79.

Burneec, G• F• (1962), "Research in East Africa on the Control of
Tsetse TLies Yro_ the Air", ASr. Avtat., _ (3), pp 79-87.

Butler, J., Akesson, N. B., and Yaces, W. E. (1969), '_se of Spray
Adjuvants to Reduce Dr_fC", Trans• ASAE, pp L82-Zg6.

Cadle, D. (1965), Particle Size, Reinhold Publishing Corp., New York, N. ¥.

Calliger, R. J., Turnbpll, R. J•, and Hendrieks, C• D. (1977), "Hollow
Drop Production by InJecclon of Gas Bubbles Znco a Liquld Jec"t
aev. Scient. Znstrum., 48(7), pp 846-851.

Clark, C. J. and Dombrowski, _. (1972), "Aerodynamic Instability and Disin-
tegration of Znviscid Liquid Sheets", Prec. Roy. SAC., London, A 32..._9,
pp 467-478.

Collins, H. (1979), _aCional Agricultural AviaCionAssociation,
personal communication.

Cona_ay, J. E., Graham, J. A., and Rogers, L. B. (1978), "Effects of
PreSsure, Temperature, Adsorbent Surface, and Mobile Phase Composition
on the Supercrittcal _luid Chromatographic Fractionation of Honodtsperse
Polystyrenes", J. Chromatographic Sci., 1_5, pp 102-110.

Crane, L., Birch, S., and McCormack, P. D. (1964), '*The Effect of
Mechanical Vibration on the Breakup of a Cylindrical Water Jet in
Air" Bric J Appl _hys•, 15, pp 743-750

Cra_'ford, A. E. (1955), "Production of Spray by High Power Magnetostriction
Transducers'*, J. Acous¢. Soc. Am., 27, p 176.

Cutkomp, L. K., Hess, A. D., and Keener, G. G. (L950), "Factors
Znfluanclng Spray and Thermal Aerosol'Appllcaclon by Airplane", J. of
Econ. Encomology, 43(4), pp 456-462.

Dabora, £. K. (1967), "Production o_ Honodisperse Sprays", gev. Scient.
InsCrum., 38(4), pp 502-506.

"A New Liquid Aerosol GeneratorDavis, E. J., and Nicolaon, G. (lq71),
III. Operatlng Characteristics and Theoretlcal Analysis", J. Collold
Interface Sci., 3__7(4),pp 768-778.

DeOng, E. R. (1960), Chemical and Natural Control of Pests, Reinhold
Publishing Corp., New York, New York.

DeOng, E. R. (1956), Chemlstr_ and Uses of Pestlcldes, Reinhold Publishing
Corp., New York, New York.



• DeOns, £, R, (2953), Zas_c_ Fungus, andW¢.d Co , _e_Le_l.
Publlshin8 Co., Znc., NewYork, Nov York.

gazal£c, N., PoCtas, J. J., and ga;al£e, G_.(_977), "Pt_p&tgt£on ot
Monod£sp_so PolysCyro.a Latex", Mgcrc_olecula_ Synthases, _, pp 85-89,

Dombrowsk£, N. and Hunday, G. (1968), "Spray Dryin_", Chapcor 16,
Btochomical and D¢olo_ical Engineering Scioncot vol. 2, (Editor,
N._Blakobrough), Acudom£c Pro_,, pp 209-320.

Dosoud_l, H. (1971), "Erzeugon 81eichsrosser Tropfsn nach den
Abcropfverfahren", Chemi-Zni.-Tochn., _ (21), pp 1172-1176.

Doyle, A. W., Patron, R. _., and Shanley, E. S. (1967), "A Study of
New Means for Atomization of Distillate Fuel Oil", American Petroleum
Institute, Publ. _o. 1725.

Droz£n, Vad£m G. (1955), "The Electrical Dispersion of Liquids as
Aerosols", J. Colloid Sci., 10(2), pp 158-164.

Dunskii, V. F. and KikiCin, N. V. (1965), "Atomization of a LSquid by a
Rotating Disk and 'Secondary' Breakup of Droplets", J. Eng. Phys., _,
pp 41-45.

E_senmens_r, _. (1959), "Dynmnic Properties o£ the Surface Tension of
_acer and Aqueous Solutions of Surface Active Agents with Standing
Capillary Waves in the Frequency Range from l0 kc/s Co 1.5 Mc/s",
Acuscica, _ (4), pp 327-340.

Erln, T., and Hendricks, C. D. (1968), "Uniform Charged Solid Particle
Production", Rev. Scient. Znstrum., 39(9), pp 1269-1271.

q

E_ans, E. (1972), "Methods of Application'*, Systemic Fun_icides,
R. _. _arsh (Edlcor), John _iley & Sons, New York, New York.

Ford, R. E., and Fuz_£d_e, C. G. L. (1969), "The Formacion of Spray
Drops From Viscous Flulds", Pes_icldal Formu!a_i?n_ Research--Physical
& Colloldal Chemical Aspects, Advances in Chemlsc_y Series 86,
American Chem. Soc._ _ashln_con, D. C.

Foster, C. A., Hendrlcks, C. D., and Turabull, E. J. (1975), "Hollow
HFdrosen S_heres for Laser-fuslon Tarsecs"_ Appl. Phys. Le_t., 26 (i0),
pp 580-581.

Fraser, R. P. (1958), "The Fluid KineClcs of ApplicaClon o£ _esticidal
Chemicals", Advances in Pest Cc.,crolRe#e_rch--Volo ZI., R. L. Meccalf
(Edicor), In_ersclence Publlshe_s_ Inc., New York, New York.

Fraser, _. P., Dombrowdki, N., and Routley, J. H. (1963), '*TheProduccion
of Uniform Liquid Sheets from Spinning Cups", Chem. Eng. Sci,, I_/_3,
pp 315-321 (also pp 323- 353).



l Frear, D.E.H. (1942 & 1948), ChemiStr7 of _nsectictdes t F.unmicides I and
Retbicides, b. Van Nostrand C_., Inc., New Yd_k, _Y.I

i+ Frear, D.E.H. (1970), Pesticide Handbook--Entoma, College Science Publishers, ,

il State College, PA.
Puchs, N. A. (1964), The Mechanics of Aerosols, MacMillan Company, New
York, New York.

Fu_imoto, T., Nagaeawa, M. (1975), "Preparation ot Monodlsperse Polyetyrenes
wlnh ELgh M_lecular Weights", Polymer J., _7(3),pp 397-401.

Fulwyler, M. J., Perrlngs, J. D_, and Cram, L. g. (1973), "Production of
Uniform Microspheres", Rev. Sclent. Instrum., 4__4(2),pp 204-206.

Fulwyler, M. J., and Eaabe, O. C. (1970), '_rhe Ultrasonic Generation of
Monodisperse Aerosols"p paper presenced ac AIHA Co=ference, May 11-15_ •

Garner, F. H., and Henny, V_ E. (1953), '_ehav/or of Sprays Under High
Alclcude Conditions", Fuel, 32, pp I_I-156.

Gei!, A. F., I_aak, L_ W., Anderson, W. A.: and Hoag, V. M. (July 1962),
"Experiencem With Aerial Application of Granular Mosquito Larvlcides
in the _ern _squito Abatement Distrlct", Report o_ the 4th ASricultural
Aviation RQsearch Conference, pp 100-106.

Gershenzon, E. L., and Eknadlosyants, O. K. (1964)_ *_he Nature of
Liquid Atomization in an Ultrmsonlc Fountaln"_ Soviet Physlcs--Acoust_csj
i0(2),pp127-1n.

Green, H. L., and Lane, W. R. (1957), Partlculate CloudS: Dusts_ _
Smokes and ,V_LstS, D. Van Nostrand Co., ._ew York, New York.

Green, M. B. _ Hartley, G. S., and West, T. F. (1977), Che_Lcels for
_,ro_ Prote_tio_, Pergamon Press.

Haas, Paul A. (1975), "_ormatlon of Liquld D_ops wlth _nlfo_m and
Controlled D_a_eters at Rates of I0_ to I0D Dr_s per Minute",
AIChE J., 21 (2), pp 383-385.

!
Hamaker, J. W., and Kerlinser, H. O. (1969)_ "Vapor Pressure of

Pesticides", PeS._cidal Formulation.s R_search--PhvSital,& CO.110idal
Cheu,_cal AspeCts, Advances in Chemi_try Seri_s 86, American Chemical

!!' Socket)', _ash_ngton_ D. C.

"_i_:_ "An F.xperimancal scudy of DropletHan, C. D., and KazLmori_ F. (1978),

_ Deformation and Breakup in Pre_Sure-Driven Flows Through Conver_ins
_ and _niform Channels", J. Rheolo_y, 22(_), pp 113-133.

!i_!__ Hanson, L. P. (1973), Plane. Growth Regulators, Noyes Data Corp., Park

o "}'_'.

00000002



91

• Hart=ann, J. an_ Txolle, B. (1927), "A New Acoustic Generator: The Air Jet
General'% J. Sc£. Inst_., 4, p 101.

. Ha_r_nann, J. (1939), "Construction, Performance and DeSign of the AcouStic
Air-Jet Generator", J. Sci. Inst=., 1_66, pp 140-149.

H£dy, G. M., and Brock, J. R.(1970), The D.vuemics of Aerocolloidal
Systems, ?srsamon Press, New York.

Hillenbrand, yon Christe_, and Porstend6rfer, J. (1978), "Herstellun8
monodispers_r Fest- und Flussigteilchen mit de= Spinning-Top-Generator"
(German), Staub-Reinhalt. LuSt, 3_88(2), p 52.

Htmel, C. M. (1969), **The Opt_num Size for Insecticide Spray DropletS",
J. Econ. Entomol., 62(4), pp 919-925.

Himel, C. M. and Moore, D. (1969), '*Spray Droplet Size in the Control of.
Spruce Budworm, Boll Weevil, Bollworm, and Cabbage Looper".J. _eon.
Entomol., 62(4), pp 916-918 ....

Hinze, J. O. and Milborn, H. (1950), "Atomization of Liquids by Means of
a Rotating Cup", J. Applied Mechanics, 17, pp 145-153.

HOffman, R. A. and LindquiSt, A. W. (1949), "Fumigating Properties of
Several New Insecticides", J. E_on. Entomol., 4_2(3), pp 436-438.

Hoffsommer, A. (1973), Agricultural Aviation Guide, Modern Aircra£t Series
(Div. o_ Sports Car PreS_), Ne_ York•

Huang, J.C.P. (1970), "The Breakup of A._isyun_etric Liquid Sheets", J. Fluid
Mech., 4__3, pp 305-319.

ll'In, B. I., Eknadlosyants, O. K. (1967), I_ature of the Atomization
of Liquids in an Ultrasonic Founta/n", Soviet PhLq_tics,
12 (3), pp 269-275.

ll'in, B. I., EknadioSyants, O. K. (1969), "Influence o£ Static Pressure
on the Ultraso_ic Fountain Effect in a Liquid", Soviet Physlcs--Acoustlcs,
1__4(4), pp 452-455.

lngebo, R. D., and Foster, H. M. (1957), "Drop-Size Distribution _or Cross-
Current Breakup o£ Liquid Jets in Air Streams", NACATN 4087.

lngebo, R. D. (1966), "Atomization of Ethanol Jets in a Combustor with
Oscillatory Combustlon-Gas Flow", NASA TN D-3513.

International ?lame Research Foundation (1978), "Sonlcore Atomizers--
t!

Measurement of Droplet-Size DistributiOn , Doc Nr 513i/1 (June 2), and
Doc Rr 3131/2 (June 12, 1978).

...... oo6oooo2TSA03



!_ i 92

_r, J

_: Isler_ D A. (July, 1962), "Some Ya_ors Affectin6 the Atom£¢at£o_ of

Aerial Sprays"_ Report of the 4th Agricultural Aviation P_sea_ch
r: Conference, pp 31-32.i

_: Keller, J. B., and l_l_dner, I. (1954), "Instab_lity of Liquid St, traces

_: and the Focmation of Drops", J. Appl. Phys., 25(7), pp 918-921.

.--_ Khandwawala, A. I., NatarasJan, R. and Gupta, M. C. (1974), "Exp_rlmental

=: Investlgatlon of Liquid Fuel Atomlz_tlon Using Hartmann Acou_tlc Genera-

;iI tot", Fuel, 53, pp 268-273.

_!:: KO_henkov, V. I., and Fu_hs, N. A. (1976), "Electrohydrodynamic Atomlza-

_ tion of Liquids", Russian Chem. Eev., 4--5(12),P9 1179-1184.

_ Lafrance, P. (June, 1977), "The Breakup Length of Turbulent Liquid Jets",

- ._ J. Fluids Engr., pp 414-415.
._.

x_! Lafrance, P., and RiOter, R. C. (Sept, 1977), "Capillary Breakup of a
_ Liquid Jet with a Random Initial Perturbation", J. Appl. Mech., pp 385-388•

; Lane, 14. R. (1951), "Shatter of Drop.p____Streams of Air", Ind. Engr. Chem.,

i, 4.3.3(6). pp 1312-1317.

Lang, R. J. (1962), "Ultr_asonic Ator_Ization of Liquids", J. Acoust. Soc. Am.,_ 3_44(i),pp 6-B.

_' Langer, G. and Yamate, G. (1969) "Encapsulation of Liquid and Solid•_,.: • ,

_i," Aerosol Particles to Form Dry Powders", J. Colloid Inter£ace Sci. ,__29(3),
_: pp 450-455.

i_G Langmuir, I. (1942), Office of Scientific Eesearch and Develo_ent,

_, _.ept. No. 865.

_"_ Lee, K. W. (19_8), '_Filtration Of Suhn_ron Aerosols by Fibrous Filters_

!-',_'i Thesi_, Univ. of M_Jnnesota.
! =_;
_ Ltndblad, N. _., and Schneider, J. M. (1965), "Production of Uniform-

,_
_:i Sized Liquid Droplets", J. Sct. lnstrum, 42, pp 635-638.
i _

_"ii_ Ltppmmn, M., and Albert, i. E. (1967), Compact Electric-Motor
: _::- Driven Spinnin_ Disc Aerosol Generator", Am. Ind. HYS. A_soc. J.
=_ ' 28, pp _01-506.

_,:' Liu, B.Y.H. (1_67), P&rticle Tech. Lab., Univ. of Minnesota_ Report
I_o. 112.

_i_; Lobdell, D. D. (1967), "Particle Size-Amplitude R_lations for the
=_, Ultrasonic Ato_zer", J. of the Acoustical _ociety of America, 4-3 (2),

,,_ .... pp 229-231.

" _"_., _
:-=._~_.............._--_ .... .=_ -_........._ .....,... _ &._:.... ..............:........_=...............=_::_==.:= .,,="....... _" ...... ...... __-_-_....__-y"-_._. _; ......... __'-:"__"_.........

O0000002-TSA04



93

LanK, R. J. _1962), '*Ultrason_Lc _£on of.Liquids", J. Acoust. Soc.
Am., 34, pp 6-8.

Maas, W., and deLanie, W. (1970), "The Influence of the V£scoRity of
' Spray Liquids on the Droplet Size in ULV Aerial Application",

ASr. AviaC., 12(1), pp 21-24.

Mass, W. (1970), "The Influence of the Viscosity o_ ULV Spray Liquids
on the Droplet Distribution in Cotton", ASrieu!tural Aviation, 12 (3),
pp 83-84.

._acky, N. A. (1931), "Some Invescisacions on the Deformation and
Breakins of Water Drops in Serous Electric Fields", Proc. Roy. Soc.,
A 133_, pp 565-587.

Macquaig, R. D. (1962), "The Collection o_ Spray Droplets by Flyins
Locusts", J. Appl. Phys., 20 (10), pp 932-938.

Magarvey, R. H., and Taylor, B. N. (1956), "Apparatus for the Production
of Large Water Drops", Review o_ Scientific Instruments, 2./7 (11),
pp 944-947.

May, _. R. (1949), "An ImprOved Spinning Top HomoSeneous. Spray Apparatus",
J. Appl. Phys., 20, pp 932-938.

May, K. R. (1966), "Spinning-Top HomOgeneous Aerosol Generator with
_hockproof ._uncing"_ J. Sci. InsCrum., 4_3, pp 841-842.

Mayer, E. (December 1961), "Theory of Liquid Acom_zaCion in Htsh Velocity
Gas Screams"_ ARS J., pp 1783-1785.

MeCubbin, Jr., T. (1953), "The Particle Size Distribution in Fog
Produced by Ultrasonic Radikc_on", J. Accoustieal Soc. of America,
pp 1013-1014.

Metes'f, R. L. (1958), Advanceq in Pest Control Research, Interscience
Publishers, Inc., New York, New York.

Misses, C. C. (1955), "The Effect of Ambient Pressure Oscillations on
the Disintesrac£on and Dispersion of a Liquid Jet", Jet Pr_pulsion,
pp _25-534.

Monn, H.A.U. (1969), Manual of _utLsat_on for Iusec t Control, Food
& ASriculture OrIanization of the U.N., Rome, Italy.

Mount, C. A. (1970), "Optimum Droplet Size for Adult Mosquito Control
With Spade Sprays or Aerosols Of InseCticide_", Mosq. News, 3_ (_),
pp 70-75.

Mulla, M. S. (July 1962), '+The _le of SOme Phylico-Che_ical FectorJ
,!

' in the Performance Of _ranular Mojqu£to Larvicides p Report of the
4ch _ricultural AViation kJsearch Conference, pp &07-i12.

00000002-TSA05



94





96

SerUm, L. (1969), "The GenetaCio_ of Monodisperse Aerosols by Means of
a Dis_Cesra_ed JeC o_ Liquid", Ray. Sctenc. ZnScrum., 40(6), pp 77S-782.

Topp, H. N. (1973), '_lcrasonic AcomizaCion--A Phocosr_phic Study o5 the
Mechanism of Disintesracio_", Aerosol Sci., 4, pp 17-25.

Topp, M. N., and Eiseuklam, P. (lg72), "Induscrtal and Medical Uses
of UZcraSon_c Ac_tz4rs", UZCrasontcs, 10 (3), pp 127-133.

U. S. Government Prtnc_nS Office (1978), U. S. ZncernaCtonaZ Trade
Co_nission--S_chec,_c OrSenic Che_ioals U. S. Pro'ducCi0_ a Sales t
i977, USITC Pub1. 920, Washinscon, D.C.

Vonneguc, 3. (1947), "The Nucleation of Ice Formation by S£1ver
Iodide", J. Appl. Phys.___18(7), pp 593-595.

Vonuesuc, B,, and Neubauer, R. L. (1952), "Production of t4onodtspe_se
L_quid Particles by Electrical Ato_LzaCion", J. Colloid Set., 7,
pp 616-622.

Wachcel, R. Z., and Victor, K. (1962), "The Preparation and Size
Distribution of Some MonodtsperSe Emulsions", Journal of Collotc
Scf., 17, pp $31-564.

Walcon, W. H., and PrewecC, W. C. (1949), "The ProduCtion of Sproys and
•XfLscs of Uniform Drop S_ze by Means bf Spinntns Disc Type Sprayers",
Proc. PhyS. Soc., 62 (6), pp 341-350.

_aCson, E. A. (1968), Prec. Znscn. Mech. EngrS., 158, p 187.

_eiss, M. A., and Wors_, C. H° (April 1959), "ACoucLzaciou in l_igh
_eloc._.__A_rsCrea_s ", _ Journals pp 252-259.

_iSS, L. D. (_6), '_rop-Size Prediction for-T_f:_-Fluid Atomizers"
J. ZnaC. Fuel, 37, pp 500-505.

_;ilce, S. E., Akesson, N. B., ¥aCes, W. S., Chr_sCensen, P., Co_den,
_. E., Hudson, D. C., and Weisc, O. I. (1974), "Drop-Size Concrol
and _Lccrafc Spray Equip_enC", Agr. Aviat., 16(1), pp 7-14.

_ilcOx, _. L., and Tare, R. W. (1965), "Liquid AconcLzacion in a Hish
_' Intensity Sound Field", AZChE J., _1 (1)_ p..p69-72.

:' Wolf, W. R. (1961), "Study og che Vtbracin_ Reed in the Production of
Small Droplacs and Solid P&rcicles of Unifor_ Size", Rev. ScienC.
Instrum., 3__2(I0),pp 1126-1129.

_oosl_y, J. P., and Turnbull, R. 3. (1977), "Technique for Produc; 4
Uniform Charsed Drops of Cryosenic Liquids", Rev. Set. ZnsCrum.,
48 (3), pp 254-260.

IL

a, 00000002-TSA08




